

US009462794B2

(12) United States Patent

Murphy et al.

(10) Patent No.: US 9,462,794 B2

(45) **Date of Patent:** *Oct. 11, 2016

(54) NON-HUMAN ANIMALS HAVING A HUMANIZED SIGNAL-REGULATORY PROTEIN GENE

(71) Applicant: **REGENERON**

PHARMACEUTICALS, INC.,

Tarrytown, NY (US)

(72) Inventors: Andrew J. Murphy,

Croton-on-Hudson, NY (US); O. Gavin Thurston, Briarcliff Manor, NY (US); Bindu Varghese, Hopewell Junction, NY (US); Cagan Gurer, Chappaqua,

NY (US)

(73) Assignee: REGENERON

PHARMACEUTICALS, INC.,

Tarrytown, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/882,531

(22) Filed: Oct. 14, 2015

(65) Prior Publication Data

US 2016/0050896 A1 Feb. 25, 2016

Related U.S. Application Data

- (63) Continuation of application No. 14/493,745, filed on Sep. 23, 2014, now Pat. No. 9,193,977.
- (60) Provisional application No. 61/881,261, filed on Sep. 23, 2013.

(51)	Int. Cl.	
	C12N 15/90	(2006.01)
	A01K 67/027	(2006.01)
	C12N 5/10	(2006.01)
	A61K 49/00	(2006.01)
	C12N 15/85	(2006.01)
	C12N 15/89	(2006.01)
	G01N 33/50	(2006.01)
	C12N 9/16	(2006.01)
	C07K 14/705	(2006.01)
		` '

(52) U.S. Cl.

CPC A01K 67/0278 (2013.01); A61K 49/0008 (2013.01); C12N 9/16 (2013.01); C12N 15/8509 (2013.01); C12N 15/89 (2013.01); G01N 33/5011 (2013.01); G01N 33/5088 (2013.01); A01K 2207/12 (2013.01); A01K 2207/15 (2013.01); A01K 2217/05 (2013.01); A01K 2217/054 (2013.01); A01K 2217/072 (2013.01); A01K 2227/10 (2013.01); A01K 2227/105 (2013.01); A01K 2267/031 (2013.01); A01K 2267/031 (2013.01); A01K 2267/0381 (2013.01); A01K 2267/0387 (2013.01); C07K 14/70503 (2013.01); C07K 14/70596 (2013.01); C07K

2319/00 (2013.01); C12N 15/902 (2013.01); C12N 2015/8527 (2013.01); C12N 2015/8572 (2013.01); C12N 2800/30 (2013.01); C12Y 301/03048 (2013.01); G01N 2500/04 (2013.01); G01N 2500/10 (2013.01)

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

9,193,977	B2*	11/2015	Murphy Murphy Flavell	A01K 67/0278
2015/0089678	Δ1	3/2015	Murnhy et al	800/18

FOREIGN PATENT DOCUMENTS

WO	WO 2011/044050 A2	4/2011
WO	WO 2012/040207 A2	3/2012
WO	WO 2012/112544 A2	8/2012
WO	WO 2013/063556 A1	5/2013
WO	WO 2013/192030 A1	12/2013
WO	WO 2014/039782 A2	3/2014

OTHER PUBLICATIONS

Willinger et al. (2011) PNAS, vol. 108(6), 2390-2395.* Navarro-Alvarez et al. (2011) Cellular and Molecular Immunology, vol. 8.285-288.*

Barclay et al. (2006) Nature Reviews, vol. 6, 457-464.*
Brooke et al. (2004) J. Immunol., vol. 173,2562-2570.*
Sano et al. (1999) Biochem. J., vol. 344, 667-675.*

Barclay, A.N. et al., "The SIRP Family of Receptors and Immune Regulation", Nature Reviews—Immunology 6:457-464 (Jun. 2006).

(Continued)

Primary Examiner — Anne Marie S Wehbe (74) Attorney, Agent, or Firm — Scully, Scott, Murphy & Presser, P.C.; Neil Miyamoto

(57) ABSTRACT

Genetically modified non-human animals and methods and compositions for making and using the same are provided, wherein the genetic modification comprises a humanization of an endogenous signal-regulatory protein gene, in particular a humanization of a SIRP α gene. Genetically modified mice are described, including mice that express a human or humanized SIRP α protein from an endogenous SIRP α locus.

41 Claims, 8 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Brook G. et al., "Human Lymphocytes Interact Directly With CD47 Through a Novel Member of the Signal Regulatory Protein (SIRP) Family", The Journal of Immunology 173:2562-2570 (2004).

Inagaki, K et al., "SHPS-1 Regulates Integrin-Mediated Cytoskeletal Reorganization and Cell Motility", The EMBO Journal 19(24):6721-6731 (2000).

Ishikawa-Sekigami, T. et al., "SHPS-1 Promotes the Survival of Circulating Erythrocytes Through Inhibition of Phagocytosis by Splenic Macrophages", Blood 107(1):341-348 (Jan. 1, 2006).

Legrand N. et al., "Functional CD47/Signal Regulatory Protein Alpha (SIRPα) Interaction is Required for Optimal Human T- and Natural Killer- (NK) Cell Homeostatis in Vivo", PNAS 108(32):13224-13229 (Aug. 9, 2011).

Navarro-Alvarez N. et al., "CD47: A New Player in Phagocytosis and Xenograft Rejection", Cellular & Molecular Immunology 8:285-288 (2011).

Oldenborg P-A et al., "Role of CD47 as a Marker of Self on Red Blood Cells", Science 288:2051-2054 (Jun. 16, 2000).

Sano S-I et al., "Gene Structure of Mouse BIT/SHPS-1", Biochem J. 344:667-675 (1999).

Shultz L.D. et al., "Multiple Defects in Innate and Adaptive Immunologic Function in NOD/LtSz-Scid Mice", The Journal of Immunology 154:180-191 (1995).

Strowig T. et al., "Transgenic Expression of Human Signal Regulatory Protein Alpha in Rag2-/-γc-/- Mice Improves Engraftment of Human Hematopoietic Cells in Humanized Mice", PNAS 108(32):13218-13223 (Aug. 9, 2011).

Strowig T. et al., "Transgenic Expression of Human Signal Regulatory Protein Alpha in Rag2-/-yc-/- Mice Improves Engraftment of Human Hematopoietic Cells in Humanized Mice", PNAS, Supporting Material, pp. 1-4 (Aug. 9, 2011).

Takenaka K. et al., "Polymorphism in Sirpa Modulates Engraftment of Human Hematopoietic Stem Cells", Nature Immunology 8(12):1313-1323 (Dec. 2007).

Takenaka K. et al., "Polymorphism in Sirpa Modulates Engraftment of Human Hematopoietic Stem Cells", Nature Immunology, Supplemental Material, pp. 1-5 (Dec. 2007).

Tomizawa T. et al., "Resistance to Experimental Autoimmune Encephalomyelitis and Impaired T Cell Priming by Dendritic Cells in Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Substrate-1 Mutant Mice", The Journal of Immunology 179(2):869-877 (Jul. 15, 2007).

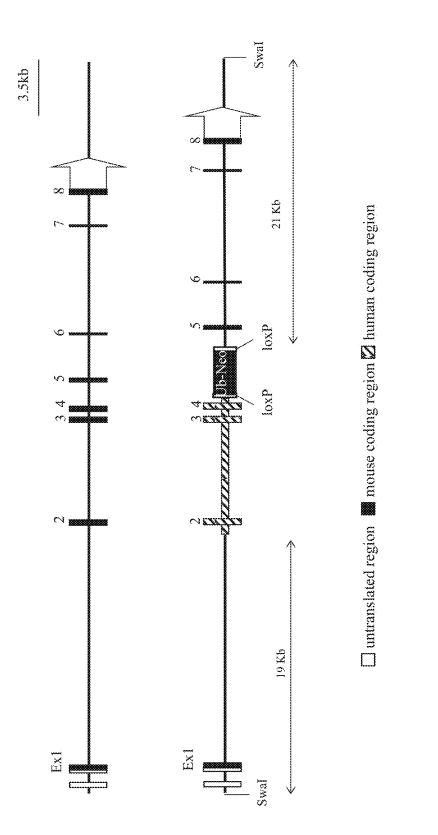
Valenzuela D.M. et al., "High-Throughput Engineering of the Mouse Genome Coupled with High-Resolution Expression Analysis", Nature Biotechnology 21(6):652-659 (Jun. 2003).

Verneris M.R. et al., "Low Levels of Her2/Neu Expressed by Ewing's Family Tumor Cell Lines Can Redirect Cytokine-Induced Killer Cells", Clinical Cancer Research 11(12):4561-4570 (Jun. 15, 2005).

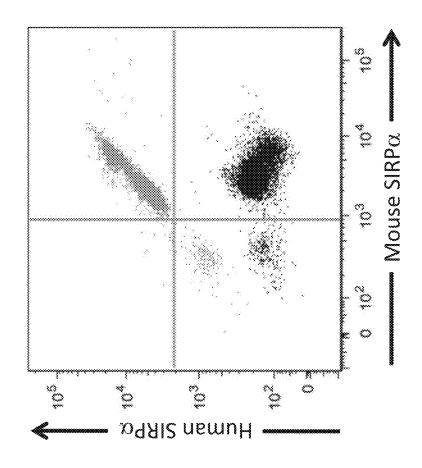
Willinger T. et al., "Human IL-3/GM-CSF Knock-in Mice Support Human Alveolar Macrophage Development and Human Immune Responses in the Lung", PNAS 108(6):2390-2395 (Feb. 8, 2011), including Willinger supporting information pp. 1-6.

Yamao T. et al., "Negative Regulation of Platelet Clearance and of the Macrophage Phagocytic Response by the Transmembrane Glycoprotein SHPS-1", The Journal of Biological Chemistry 277(42):39833-39839 (Oct. 18, 2002).

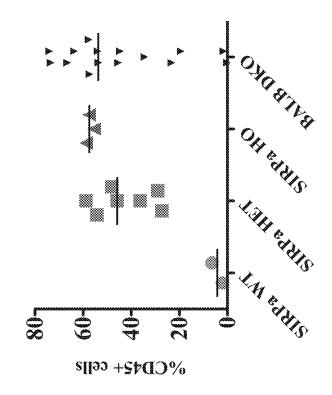
Anderson P., "Post-Transcriptional Control of Cytokine Production", Nature Immunology 9(4):353-359 (Apr. 2008).


Rongvaux A. et al., "Human Thrombopoietin Knockin Mice Efficiently Support Human Hematopoiesis in Vivo", PNAS 108(6):2378-2383 (Feb. 8, 2011).

Willinger T. et al., "Improving Human Hemato-Lymphoid-System Mice by Cytokine Knock-In Gene Replacement", Trends in Immunology 32(7):321-327 (Jul. 2011).


International Search Report and Written Opinion dated Mar. 9, 2015 received from Application No. PCT/US2014/056910.

Jacob H.J. et al., "Gene Targeting in the Rat: Advances and Opportunities", Trends in Genetics 26(12):510-518 (Dec. 2010). Tong C. et al., "Production of p53 Gene Knockout Rats by Homologous Recombination in Embryonic Stem Cells", Nature 467:211-215 (Sep. 9, 2010).


* cited by examiner

Figure

Figure

Figure

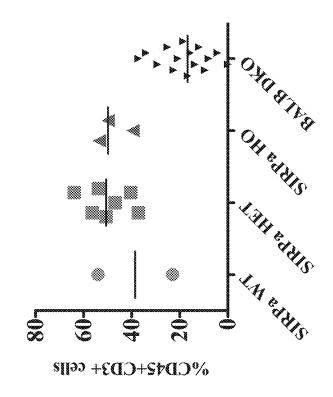
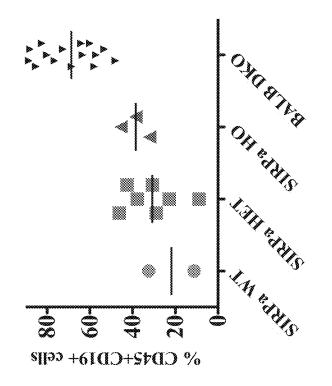



Figure 4

Figure

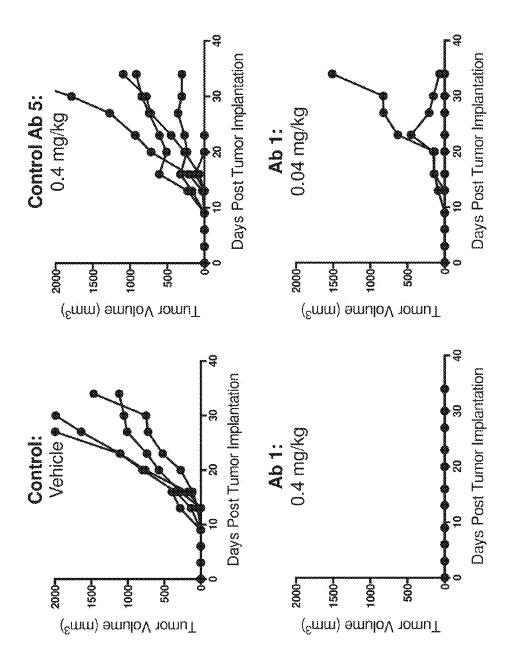


Figure 6

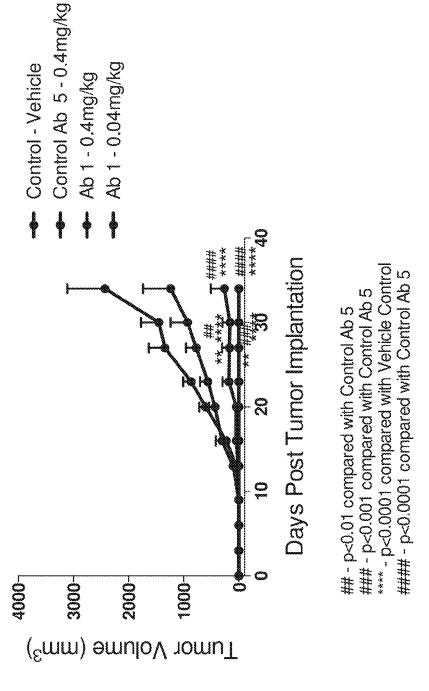
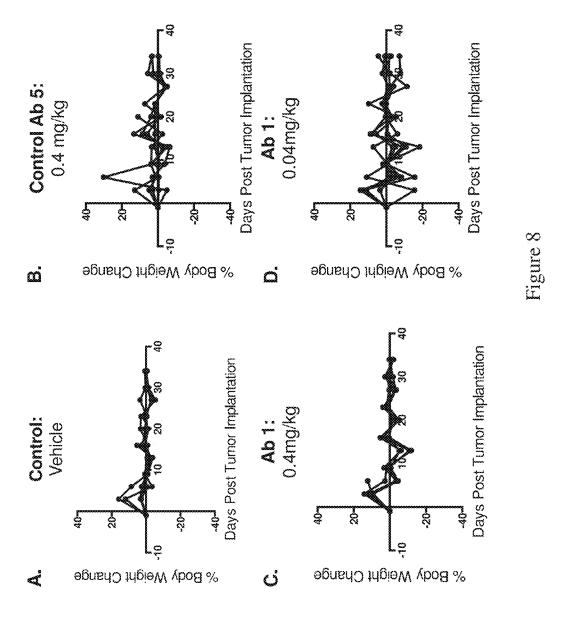



Figure 7

NON-HUMAN ANIMALS HAVING A HUMANIZED SIGNAL-REGULATORY PROTEIN GENE

CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/493,745, filed Sep. 23, 2014, which claims the benefit of priority of U.S. Provisional Application No. ¹⁰ 61/881,261, filed Sep. 23, 2013, the entire contents of which are incorporated herein by reference.

BACKGROUND

The immune system is composed of several different cell types that are involved in multiple highly regulated processes and together generate immune responses that are effective in eliminating foreign proteins. Further, these same immune cells have been found to possess a self-awareness property by virtue of, inter alia, regulatory membrane proteins that regulate cell-to-cell interactions. Such communication is critical for the survival of such organisms, as these same proteins are suggested to be an important determinant of transplant engraftment. However, no in vivo system exists to determine the molecular aspects of human immune cell-to-cell interactions and its regulation. Such a system provides a source for assays in human hematopoietic and immune system related functions in vivo, identification of novel therapies and vaccines.

SUMMARY OF INVENTION

The present invention encompasses the recognition that it is desirable to engineer non-human animals to permit 35 SIRP α gene. In some encompasses the recognition that non-human animals having a humanized SIRP α gene and/or otherwise expressing, containing, or producing a human or humanized SIRP α protein are desirable, for example for use 40 SIRP α gene in engraftment of human hematopoietic stem cells.

In some embodiments, a non-human animal of the present invention expresses a SIRP α polypeptide comprising an extracellular portion of a human SIRP α protein and intracellular portion of a mouse SIRP α protein.

In some embodiments, an extracellular portion of a human SIRP α protein comprises amino acids corresponding to residues 28-362 of a human SIRP α protein that appears in SEQ ID NO: 4.

In some embodiments, an extracellular portion of a 50 human SIRP α protein shares a percent identity of at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% with a corresponding extracellular portion of a human SIRP α protein that appears in Table 3. 55 In some embodiments, an extracellular portion of a human SIRP α protein shares 100% identity (or identical) with a corresponding extracellular portion of a human SIRP α protein that appears in Table 3.

In some embodiments, a non-human animal of the present 60 invention does not also express an endogenous non-human SIRP α protein. In some embodiments, the non-human animal is a rodent and does not also express an endogenous rodent SIRP α protein. In some embodiments, the non-human animal is a mouse and does not also express an 65 endogenous mouse SIRP α protein having a sequence that appears in Table 3.

2

In some embodiments, the present invention provides a non-human animal comprising a SIRP α gene that comprises exons 2, 3 and 4 of a human SIRP α gene operably linked to a non-human SIRP α promoter.

In some embodiments, a SIRP α gene of a non-human animal of the present invention comprises exons 1, 5, 6, 7 and 8 of an endogenous non-human SIRP α gene.

In various embodiments, a non-human animal of the present invention is a rodent. In some certain embodiments, a rodent of the present invention is selected from a mouse or a rat.

In some embodiments, the present invention provides a $SIRP\alpha$ polypeptide encoded by the gene of a non-human animal as described herein.

In some embodiments, the present invention provides a cell or tissue isolated from a non-human animal as described herein. In some embodiments, a cell is selected from a lymphocyte (e.g., a B or T cell), a myeloid cell (e.g., a macrophage, a neutrophil, a granulocyte, a myeloid dendritic cell, and a mast cell), and a neuron. In some embodiments, a tissue is selected from adipose, bladder, brain, breast, bone marrow, eye, heart, intestine, kidney, liver, lung, lymph node, muscle, pancreas, plasma, serum, skin, spleen, stomach, thymus, testis, ovum, and/or a combination thereof.

In some embodiments, the present invention provides an isolated mouse cell or tissue whose genome includes a SIRP α gene that encodes the extracellular portion of a human SIRP α protein linked to the intracellular portion of a mouse SIRP α protein. In some embodiments, a SIRP α gene of the present invention is operably linked to a mouse SIRP α promoter. In some embodiments, a SIRP α gene of the present invention comprises exons 2, 3, and 4 of a human SIRP α gene.

In some embodiments, the present invention provides a non-human embryonic stem (ES) cell whose genome comprises a SIRP α gene as described herein. In some embodiments, the ES cell comprises exons 2, 3 and 4 of a human SIRP α gene operably linked to a non-human SIRP α promoter. In some certain embodiments, the ES cell is a rodent ES cell. In some embodiments, a non-human embryonic stem cell of the present invention is a mouse or rat embryonic stem cell.

In some embodiments, the present invention provides a non-human embryo comprising, made from, obtained from, or generated from a non-human embryonic stem cell comprising a SIRP α gene as described herein. In some embodiments, a non-human embryo of the present invention is a rodent embryo. In some embodiments, a rodent embryo as described herein is a mouse or rat embryo.

In some embodiments, the present invention provides a method of making a non-human animal that expresses a SIRP α protein from an endogenous SIRP α locus, wherein the SIRP α protein comprises a human sequence, the method comprising targeting an endogenous SIRP α locus in a non-human ES cell with a genomic fragment comprising a nucleotide sequence that encodes a human SIRP α protein in whole or in part; obtaining a modified non-human ES cell comprising an endogenous SIRP α locus that comprises said human sequence; and, creating a non-human animal using said modified ES cell.

In some embodiments, said nucleotide sequence comprises exons 2, 3 and 4 of a human SIRP α gene. In some embodiments, said nucleotide sequence comprises exons 2, 3 and 4 of a human SIRP α gene having a sequence at least 50%, at least 55%, at least 60%, at least 65%, at least 70%,

at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% identical to a human SIRPα gene that appears in Table 3.

In some embodiments, said nucleotide sequence encodes amino acid residues 28-362 of a human SIRPα protein. In 5 some embodiments, said nucleotide sequence encodes amino acid residues 28-362 of a human SIRPa protein having a sequence at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% identical to 10 a human SIRP α protein that appears in Table 3.

In some embodiments, the present invention provides a method of providing a mouse whose genome includes a SIRPα gene that encodes the extracellular portion of a human SIRPa protein linked to the intracellular portion of 15 a mouse SIRPa protein, the method comprising modifying the genome of a mouse so that it comprises a SIRPa gene that encodes the extracellular portion of a human SIRP α protein linked to the intracellular portion of a mouse SIRPa ments, the SIRP α gene is a SIRP α gene as described herein. In some embodiments, the SIRP α gene comprises exons 2, 3, and 4 of a human SIRP α gene.

In some embodiments, the present invention provides a method of engrafting human cells into a mouse, the method 25 comprising steps of providing a mouse whose genome comprises a SIRPa gene that encodes the extracellular portion of a human SIRPα protein linked to the intracellular portion of a mouse SIRPa protein, and transplanting one or more human cells into the mouse. In some certain embodi- 30 ments, the method further comprises as step assaying engraftment of the one or more human cells in the mouse. In some certain embodiments, the step of assaying comprises comparing the engraftment of the one or more human cells to the engraftment in one or more wild-type mice. In some 35 certain embodiments, the step of assaying comprises comparing the engraftment of the one or more human cells to the engraftment in one or more mice whose genome does not comprise a SIRPa gene that encodes the extracellular portion of a human SIRPa protein linked to the intracellular 40 portion of a mouse SIRPa protein.

In some embodiments, the human cells are hematopoietic stem cells. In some embodiments, the human cells are transplanted intravenously. In some embodiments, the human cells are transplanted intraperitoneally. In some 45 embodiments, the human cells are transplanted subcutaneously.

In some embodiments, the present invention provides a method comprising the steps of providing one or more cells whose genome includes a SIRPa gene that encodes the 50 extracellular portion of a human SIRPa protein linked to the intracellular portion of a mouse SIRPa protein, incubating the one or more cells with a labeled substrate, and measuring phagocytosis of the labeled substrate by the one or more cells. In some embodiments, the cells are mouse cells.

In some embodiments, the substrate is fluorescently labeled. In some embodiments, the substrate is labeled with an antibody. In some embodiments, the substrate is one or more red blood cells. In some embodiments, the substrate is one or more bacterial cells.

In some embodiments, the present invention provides a method comprising the steps of providing a mouse whose genome includes a SIRPa gene that encodes the extracellular portion of a human SIRPa protein linked to the intracellular portion of a mouse SIRPa protein, exposing the 65 mouse to an antigen, and measuring phagocytosis of the antigen by one or more cells of the mouse. In some embodi-

ments, the step of exposing comprises exposing the mouse to an antigen that is fluorescently labeled. In some embodiments, the step of exposing comprises exposing the mouse to one or more cells that comprise the antigen. In some embodiments, the step of exposing comprises exposing the mouse to one or more human cells comprising the antigen. In some embodiments, the step of exposing comprises exposing the mouse to one or more bacterial cells comprising the antigen.

In various embodiments, a SIRPα gene of the present invention comprises exons 2, 3, and 4 of a human SIRP α gene. In various embodiments, an extracellular portion of a human SIRPa protein of the present invention comprises amino acids corresponding to residues 28-362 of a human SIRPα protein that appears in Table 3. In various embodiments, a SIRP α gene of the present invention is operably linked to a mouse SIRP α promoter.

In some embodiments, the present invention provides a protein thereby providing said mouse. In some embodi- 20 non-human animal obtainable by methods as described herein. In some certain embodiments, non-human animals of the present invention do not detectably express an extracellular portion of an endogenous SIRPα protein.

> In some embodiments, the present invention provides methods for identification or validation of a drug or vaccine, the method comprising the steps of delivering a drug or vaccine to a non-human animal as described herein, and monitoring one or more of the immune response to the drug or vaccine, the safety profile of the drug or vaccine, or the effect on a disease or condition. In some embodiments, monitoring the safety profile includes determining if the non-human animal exhibits a side effect or adverse reaction as a result of delivering the drug or vaccine. In some embodiments, a side effect or adverse reaction is selected from morbidity, mortality, alteration in body weight, alteration of the level of one or more enzymes (e.g., liver), alteration in the weight of one or more organs, loss of function (e.g., sensory, motor, organ, etc.), increased susceptibility to one or more diseases, alterations to the genome of the non-human animal, increase or decrease in food consumption and complications of one or more diseases.

> In some embodiments, the present invention provides use of a non-human animal of the present invention in the development of a drug or vaccine for use in medicine, such as use as a medicament.

> In some embodiments, the present invention provides use of a non-human animal described herein to assess the efficacy of a therapeutic drug targeting human cells. In various embodiments, a non-human animal of the present invention is transplanted with human cells, and a drug candidate targeting such human cells is administered to the animal. The efficacy of the drug is determined by monitoring the human cells in the non-human animal after the administration of the drug.

In various embodiments, non-human animals of the present invention are rodents, preferably a mouse or a rat.

As used in this application, the terms "about" and "approximately" are used as equivalents. Any numerals used in this application with or without about/approximately are meant to cover any normal fluctuations appreciated by one of ordinary skill in the relevant art.

Other features, objects, and advantages of the present invention are apparent in the detailed description that follows. It should be understood, however, that the detailed description, while indicating embodiments of the present invention, is given by way of illustration only, not limitation. Various changes and modifications within the scope of the

invention will become apparent to those skilled in the art from the detailed description.

BRIEF DESCRIPTION OF THE DRAWING

The drawing included herein is for illustration purposes only not for limitation.

FIG. 1 shows a diagram, not to scale, of an endogenous murine SIRPα gene (top) with each exon numbered. A humanized endogenous SIRPα gene (bottom) is shown 10 containing exons 2-4 of a human SIRPa gene and a neomycin selection cassette (Ub-Neo) flanked by site-specific recombinase recognition sites (e.g., loxP). The targeted insertion of exons 2-4 of a human SIRPa gene results in an endogenous gene that expresses a humanized SIRPα gene 15 having an extracellular region corresponding to a human SIRPα protein.

FIG. 2 shows an overlay of SIRPα expression of wild type and mice heterozygous for a humanized SIRPa gene.

FIG. 3 shows the percent of CD45⁺ cells in different ²⁰ strains of mice engrafted with human CD34+ cells.

FIG. 4 shows the percent of CD45⁺ CD3⁺ cells in different strains of mice engrafted with human CD34+ cells.

FIG. 5 shows the percent of CD45+ CD19+ cells in

FIG. 6 shows that Ab 1 suppressed growth of Raji tumors in a dose-dependent manner in hCD34+ engrafted SIRPα BRG mice. Raji tumor volume was measured on days 3, 6, 9, 13, 16, 20, 23, 27, 30 and 34 post tumor implantation. Data for individual animals (Panels A-D) is presented. 30 hCD34+ engrafted SIRPα BRG mice were administered 2×10⁶ Raji tumor cells subcutaneously on Day 0. Control groups received no antibody (vehicle control) (Panel A). For experimental groups, on Day 0 mice were treated with an IP dose of a non-binding control Ab (control Ab 5) at 0.4 mg/kg 35 (Panel B), or Ab 1 at 0.4 mg/kg (Panel C) or 0.04 mg/kg (Panel D), followed by twice weekly doses for the length of the study. The composite data for all individual test groups are shown in FIG. 7.

FIG. 7 shows that Ab 1 significantly suppressed growth of 40 Raji tumors compared to controls in hCD34+ engrafted SIRPα BRG mice. Data represents the composite data from n=4-5 mice per group as shown in FIG. 6. Data are expressed as mean (SEM) and were analyzed using analysis of variance (ANOVA) and post hoc tests to probe significant 45 effects (Tukey's for two-way ANOVA). One mouse in the vehicle control group, Control Ab 5 group, and Ab 1 0.4 mg/kg group was excluded from this composite graph due to early death in order to analyze data by two-way ANOVA.

FIG. 8 shows that Ab 1 did not affect body weight in 50 hCD34+ engrafted SIRPα BRG mice. Body weights were measured on days 3, 6, 9, 13, 16, 20, 23, 27, 30 and 34 post tumor implantation. Data for individual animals (Panels A-D) was measured. hCD34+ engrafted SIRPα BRG mice were administered 2×10⁶ Raji tumor cells subcutaneously on 55 Day 0. Control groups received no antibody (vehicle control) (Panel A). For experimental groups, on Day 0 mice were treated with an IP dose of the IgG1 non-binding Control Ab 5 at 0.4 mg/kg (Panel B) or Ab 1 at 0.4 mg/kg (Panel C) or 0.04 mg/kg (Panel D), followed by twice 60 weekly doses for the length of the study.

DEFINITIONS

This invention is not limited to particular methods, and 65 experimental conditions described, as such methods and conditions may vary. It is also to be understood that the

6

terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention is defined by the claims.

Unless defined otherwise, all terms and phrases used herein include the meanings that the terms and phrases have attained in the art, unless the contrary is clearly indicated or clearly apparent from the context in which the term or phrase is used. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, particular methods and materials are now described. All publications mentioned are hereby incorporated by reference.

The term "approximately" as applied herein to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term "approximately" or "about" refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).

The term "biologically active" as used herein refers to a different strains of mice engrafted with human CD34+ cells. 25 characteristic of any agent that has activity in a biological system, in vitro or in vivo (e.g., in an organism). For instance, an agent that, when present in an organism, has a biological effect within that organism, is considered to be biologically active. In particular embodiments, where a protein or polypeptide is biologically active, a portion of that protein or polypeptide that shares at least one biological activity of the protein or polypeptide is typically referred to

as a "biologically active" portion.

The term "comparable", as used herein, refers to two or more agents, entities, situations, sets of conditions, etc. that may not be identical to one another but that are sufficiently similar to permit comparison there between so that conclusions may reasonably be drawn based on differences or similarities observed. Those of ordinary skill in the art will understand, in context, what degree of identity is required in any given circumstance for two or more such agents, entities, situations, sets of conditions, etc. to be considered comparable.

The term "conservative" as used herein to describe a conservative amino acid substitution refers to substitution of an amino acid residue by another amino acid residue having a side chain R group with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of interest of a protein, for example, the ability of a receptor to bind to a ligand. Examples of groups of amino acids that have side chains with similar chemical properties include aliphatic side chains such as glycine, alanine, valine, leucine, and isoleucine; aliphatic-hydroxyl side chains such as serine and threonine; amide-containing side chains such as asparagine and glutamine; aromatic side chains such as phenylalanine, tyrosine, and tryptophan; basic side chains such as lysine, arginine, and histidine; acidic side chains such as aspartic acid and glutamic acid; and, sulfur-containing side chains such as cysteine and methionine. Conservative amino acids substitution groups include, for example, valine/leucine/isoleucine, phenylalanine/tyrosine, lysine/arginine, alanine/valine, glutamate/aspartate, and asparagine/ glutamine. In some embodiments, a conservative amino acid substitution can be substitution of any native residue in a protein with alanine, as used in, for example, alanine scanning mutagenesis. In some embodiments, a conservative

substitution is made that has a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Exhaustive Matching of the Entire Protein Sequence Database, Science 256:1443-45, hereby incorporated by reference. In some embodiments, the substitution is a moderately 5 conservative substitution wherein the substitution has a nonnegative value in the PAM250 log-likelihood matrix.

The term "disruption" as used herein refers to the result of a homologous recombination event with a DNA molecule (e.g., with an endogenous homologous sequence such as a 10 gene or gene locus. In some embodiments, a disruption may achieve or represent an insertion, deletion, substitution, replacement, missense mutation, or a frame-shift of a DNA sequence(s), or any combination thereof. Insertions may include the insertion of entire genes or fragments of genes, 15 e.g. exons, which may be of an origin other than the endogenous sequence. In some embodiments, a disruption may increase expression and/or activity of a gene or gene product (e.g., of a protein encoded by a gene). In some embodiments, a disruption may decrease expression and/or 20 activity of a gene or gene product. In some embodiments, a disruption may alter sequence of a gene or an encoded gene product (e.g., an encoded protein). In some embodiments, a disruption may truncate or fragment a gene or an encoded gene product (e.g., an encoded protein). In some embodi- 25 ments, a disruption may extend a gene or an encoded gene product; in some such embodiments, a disruption may achieve assembly of a fusion protein. In some embodiments, a disruption may affect level but not activity of a gene or gene product. In some embodiments, a disruption may affect 30 activity but not level of a gene or gene product. In some embodiments, a disruption may have no significant effect on level of a gene or gene product. In some embodiments, a disruption may have no significant effect on activity of a gene or gene product. In some embodiments, a disruption 35 may have no significant effect on either level or activity of a gene or gene product.

The phrase "endogenous locus" or "endogenous gene" as used herein refers to a genetic locus found in a parent or reference organism prior to introduction of a disruption, 40 deletion, replacement, alteration, or modification as described herein. In some embodiments, the endogenous locus has a sequence found in nature. In some embodiments, the endogenous locus is wild type. In some embodiments, the reference organism is a wild-type organism. In some 45 embodiments, the reference organism is an engineered organism. In some embodiments, the reference organism is a laboratory-bred organism (whether wild-type or engineered).

The phrase "endogenous promoter" refers to a promoter 50 that is naturally associated, e.g., in a wild-type organism, with an endogenous gene.

The term "heterologous" as used herein refers to an agent or entity from a different source. For example, when used in reference to a polypeptide, gene, or gene product or present 55 in a particular cell or organism, the term clarifies that the relevant polypeptide, gene, or gene product 1) was engineered by the hand of man; 2) was introduced into the cell or organism (or a precursor thereof) through the hand of man (e.g., via genetic engineering); and/or 3) is not naturally 60 produced by or present in the relevant cell or organism (e.g., the relevant cell type or organism type).

The term "host cell", as used herein, refers to a cell into which a heterologous (e.g., exogenous) nucleic acid or protein has been introduced. Persons of skill upon reading 65 this disclosure will understand that such terms refer not only to the particular subject cell, but also is used to refer to the

8

progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein. In some embodiments, a host cell is or comprises a prokaryotic or eukaryotic cell. In general, a host cell is any cell that is suitable for receiving and/or producing a heterologous nucleic acid or protein, regardless of the Kingdom of life to which the cell is designated. Exemplary cells include those of prokaryotes and eukaryotes (single-cell or multiple-cell), bacterial cells (e.g., strains of E. coli, Bacillus spp., Streptomyces spp., etc.), mycobacteria cells, fungal cells, yeast cells (e.g., S. cerevisiae, S. pombe, P. pastoris, P. methanolica, etc.), plant cells, insect cells (e.g., SF-9, SF-21, baculovirus-infected insect cells, Trichoplusia ni, etc.), nonhuman animal cells, human cells, or cell fusions such as, for example, hybridomas or quadromas. In some embodiments, the cell is a human, monkey, ape, hamster, rat, or mouse cell. In some embodiments, the cell is eukaryotic and is selected from the following cells: CHO (e.g., CHO K1, DXB-11 CHO, Veggie-CHO), COS (e.g., COS-7), retinal cell, Vero, CV1, kidney (e.g., HEK293, 293 EBNA, MSR 293, MDCK, HaK, BHK), HeLa, HepG2, WI38, MRC 5, Colo205, HB 8065, HL-60, (e.g., BHK21), Jurkat, Daudi, A431 (epidermal), CV-1, U937, 3T3, L cell, C127 cell, SP2/0, NS-0, MMT 060562, Sertoli cell, BRL 3A cell, HT1080 cell, myeloma cell, tumor cell, and a cell line derived from an aforementioned cell. In some embodiments, the cell comprises one or more viral genes, e.g., a retinal cell that expresses a viral gene (e.g., a PER.C6TM cell). In some embodiments, a host cell is or comprises an isolated cell. In some embodiments, a host cell is part of a tissue. In some embodiments, a host cell is part of an organism.

The term "humanized", is used herein in accordance with its art-understood meaning to refer to nucleic acids or proteins whose structures (i.e., nucleotide or amino acid sequences) include portions that correspond substantially or identically with structures of a particular gene or protein found in nature in a non-human animal, and also include portions that differ from that found in the relevant particular non-human gene or protein and instead correspond more closely with comparable structures found in a corresponding human gene or protein. In some embodiments, a "humanized" gene is one that encodes a polypeptide having substantially the amino acid sequence as that of a human polypeptide (e.g., a human protein or portion thereof—e.g., characteristic portion thereof). To give but one example, in the case of a membrane receptor, a "humanized" gene may encode a polypeptide having an extracellular portion having an amino acid sequence as that of a human extracellular portion and the remaining sequence as that of a non-human (e.g., mouse) polypeptide. In some embodiments, a humanized gene comprises at least a portion of an DNA sequence of a human gene. In some embodiment, a humanized gene comprises an entire DNA sequence of a human gene. In some embodiments, a humanized protein comprises a sequence having a portion that appears in a human protein. In some embodiments, a humanized protein comprises an entire sequence of a human protein and is expressed from an endogenous locus of a non-human animal that corresponds to the homolog or ortholog of the human gene.

The term "identity" as used herein in connection with a comparison of sequences, refers to identity as determined by a number of different algorithms known in the art that can be used to measure nucleotide and/or amino acid sequence identity. In some embodiments, identities as described

herein are determined using a ClustalW v. 1.83 (slow) alignment employing an open gap penalty of 10.0, an extend gap penalty of 0.1, and using a Gonnet similarity matrix (MACVECTORTM 10.0.2, MacVector Inc., 2008).

The term "isolated", as used herein, refers to a substance 5 and/or entity that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature and/or in an experimental setting), and/or (2) designed, produced, prepared, and/or manufactured by the hand of man. Isolated sub- 10 stances and/or entities may be separated from about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% of the other 15 components with which they were initially associated. In some embodiments, isolated agents are about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. As used herein, a 20 substance is "pure" if it is substantially free of other components. In some embodiments, as will be understood by those skilled in the art, a substance may still be considered "isolated" or even "pure", after having been combined with certain other components such as, for example, one or more 25 carriers or excipients (e.g., buffer, solvent, water, etc.); in such embodiments, percent isolation or purity of the substance is calculated without including such carriers or excipients. To give but one example, in some embodiments, a biological polymer such as a polypeptide or polynucleotide 30 that occurs in nature is considered to be "isolated" when, a) by virtue of its origin or source of derivation is not associated with some or all of the components that accompany it in its native state in nature; b) it is substantially free of other polypeptides or nucleic acids of the same species from the 35 species that produces it in nature; c) is expressed by or is otherwise in association with components from a cell or other expression system that is not of the species that produces it in nature. Thus, for instance, in some embodiments, a polypeptide that is chemically synthesized or is 40 synthesized in a cellular system different from that which produces it in nature is considered to be an "isolated" polypeptide. Alternatively or additionally, in some embodiments, a polypeptide that has been subjected to one or more purification techniques may be considered to be an "iso- 45 lated" polypeptide to the extent that it has been separated from other components a) with which it is associated in nature; and/or b) with which it was associated when initially produced.

The phrase "non-human animal" as used herein refers to 50 any vertebrate organism that is not a human. In some embodiments, a non-human animal is acyclostome, a bony fish, a cartilaginous fish (e.g., a shark or a ray), an amphibian, a reptile, a mammal, and a bird. In some embodiments, a non-human mammal is a primate, a goat, a sheep, a pig, a 55 dog, a cow, or a rodent. In some embodiments, a non-human animal is a rodent such as a rat or a mouse.

The phrase "nucleic acid", as used herein, in its broadest sense, refers to any compound and/or substance that is or can be incorporated into an oligonucleotide chain. In some 60 embodiments, a nucleic acid is a compound and/or substance that is or can be incorporated into an oligonucleotide chain via a phosphodiester linkage. As will be clear from context, in some embodiments, "nucleic acid" refers to individual nucleic acid residues (e.g., nucleotides and/or 65 nucleosides); in some embodiments, "nucleic acid" refers to an oligonucleotide chain comprising individual nucleic acid

10

residues. In some embodiments, a "nucleic acid" is or comprises RNA; in some embodiments, a "nucleic acid" is or comprises DNA. In some embodiments, a nucleic acid is, comprises, or consists of one or more natural nucleic acid residues. In some embodiments, a nucleic acid is, comprises, or consists of one or more nucleic acid analogs. In some embodiments, a nucleic acid analog differs from a nucleic acid in that it does not utilize a phosphodiester backbone. For example, in some embodiments, a nucleic acid is, comprises, or consists of one or more "peptide nucleic acids", which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention. Alternatively or additionally, in some embodiments, a nucleic acid has one or more phosphorothioate and/or 5'-N-phosphoramidite linkages rather than phosphodiester bonds. In some embodiments, a nucleic acid is, comprises, or consists of one or more natural nucleosides (e.g., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine). In some embodiments, a nucleic acid is, comprises, or consists of one or more nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, C-5 propynyl-cytidine, C-5 propynyl-C5-bromouridine, uridine, 2-aminoadenosine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, 2-thiocytidine, methylated bases, intercalated bases, and combinations thereof). In some embodiments, a nucleic acid comprises one or more modified sugars (e.g., 2'-fluororibose, ribose, 2'-deoxyribose, arabinose, and hexose) as compared with those in natural nucleic acids. In some embodiments, a nucleic acid has a nucleotide sequence that encodes a functional gene product such as an RNA or protein. In some embodiments, a nucleic acid includes one or more introns. In some embodiments, nucleic acids are prepared by one or more of isolation from a natural source, enzymatic synthesis by polymerization based on a complementary template (in vivo or in vitro), reproduction in a recombinant cell or system, and chemical synthesis. In some embodiments, a nucleic acid is at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 20, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 or more residues long. In some embodiments, a nucleic acid is single stranded; in some embodiments, a nucleic acid is double stranded. In some embodiments a nucleic acid has a nucleotide sequence comprising at least one element that encodes, or is the complement of a sequence that encodes, a polypeptide. In some embodiments, a nucleic acid has enzymatic activity.

The phrase "operably linked", as used herein, refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner A control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences. "Operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest. The term "expression control sequence" as used herein refers to polynucleotide sequences which are necessary to effect the expression and processing of coding

sequences to which they are ligated. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; 5 sequences that enhance translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism. For example, in prokaryotes, such 10 control sequences generally include promoter, ribosomal binding site, and transcription termination sequence, while in eukaryotes, typically, such control sequences include promoters and transcription termination sequence. The term "control sequences" is intended to include components 15 whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

The term "polypeptide", as used herein, refers to any 20 polymeric chain of amino acids. In some embodiments, a polypeptide has an amino acid sequence that occurs in nature. In some embodiments, a polypeptide has an amino acid sequence that does not occur in nature. In some embodiments, a polypeptide has an amino acid sequence 25 that is engineered in that it is designed and/or produced through action of the hand of man.

The term "recombinant", as used herein, is intended to refer to polypeptides (e.g., signal-regulatory proteins as described herein) that are designed, engineered, prepared, 30 expressed, created or isolated by recombinant means, such as polypeptides expressed using a recombinant expression vector transfected into a host cell, polypeptides isolated from a recombinant, combinatorial human polypeptide library (Hoogenboom H. R., (1997) TIB Tech. 15:62-70; 35 Azzazy H., and Highsmith W. E., (2002) Clin. Biochem. 35:425-445; Gavilondo J. V., and Larrick J. W. (2002) BioTechniques 29:128-145; Hoogenboom H., and Chames P. (2000) Immunology Today 21:371-378), antibodies isolated from an animal (e.g., a mouse) that is transgenic for 40 human immunoglobulin genes (see e.g., Taylor, L. D., et al. (1992) Nucl. Acids Res. 20:6287-6295; Kellermann S-A., and Green L. L. (2002) Current Opinion in Biotechnology 13:593-597; Little M. et al (2000) Immunology Today 21:364-370) or polypeptides prepared, expressed, created or 45 isolated by any other means that involves splicing selected sequence elements to one another. In some embodiments, one or more of such selected sequence elements is found in nature. In some embodiments, one or more of such selected sequence elements is designed in silico. In some embodi- 50 ments, one or more such selected sequence elements results from mutagenesis (e.g., in vivo or in vitro) of a known sequence element, e.g., from a natural or synthetic source. For example, in some embodiments, a recombinant polypeptide is comprised of sequences found in the genome of a 55 source organism of interest (e.g., human, mouse, etc.). In some embodiments, a recombinant polypeptide has an amino acid sequence that resulted from mutagenesis (e.g., in vitro or in vivo, for example in a non-human animal), so that the amino acid sequences of the recombinant polypeptides 60 are sequences that, while originating from and related to polypeptides sequences, may not naturally exist within the genome of a non-human animal in vivo.

The term "replacement" is used herein to refer to a process through which a "replaced" nucleic acid sequence 65 (e.g., a gene) found in a host locus (e.g., in a genome) is removed from that locus and a different, "replacement"

nucleic acid is located in its place. In some embodiments, the replaced nucleic acid sequence and the replacement nucleic acid sequences are comparable to one another in that, for example, they are homologous to one another and/or contain corresponding elements (e.g., protein-coding elements, regulatory elements, etc.). In some embodiments, a replaced nucleic acid sequence includes one or more of a promoter, an enhancer, a splice donor site, a splice receiver site, an intron, an exon, an untranslated region (UTR); in some embodiments, a replacement nucleic acid sequence includes one or more coding sequences. In some embodiments, a replacement nucleic acid sequence is a homolog of the replaced nucleic acid sequence. In some embodiments, a replacement nucleic acid sequence is an ortholog of the replaced sequence. In some embodiments, a replacement nucleic acid sequence is or comprises a human nucleic acid sequence. In some embodiments, including where the replacement nucleic acid sequence is or comprises a human nucleic acid sequence, the replaced nucleic acid sequence is or comprises a rodent sequence (e.g., a mouse sequence). The nucleic acid sequence so placed may include one or more regulatory sequences that are part of source nucleic acid sequence used to obtain the sequence so placed (e.g., promoters, enhancers, 5'- or 3'-untranslated regions, etc.). For example, in various embodiments, the replacement is a substitution of an endogenous sequence with a heterologous sequence that results in the production of a gene product from the nucleic acid sequence so placed (comprising the heterologous sequence), but not expression of the endogenous sequence; the replacement is of an endogenous genomic sequence with a nucleic acid sequence that encodes a protein that has a similar function as a protein encoded by the endogenous sequence (e.g., the endogenous genomic sequence encodes a SIRPa protein, and the DNA fragment encodes one or more human SIRPa proteins). In various embodiments, an endogenous gene or fragment thereof is replaced with a corresponding human gene or fragment thereof. A corresponding human gene or fragment thereof is a human gene or fragment that is an ortholog of, or is substantially similar or the same in structure and/or function, as the endogenous gene or fragment thereof that is replaced.

The phrase "signal-regulatory protein" or "SIRP" as used herein refers to a signal-regulatory protein receptor, e.g., a SIRP α receptor. SIRP genes include a plasma membrane receptor that is expressed on the surface of a cell and serves as a regulatory protein involved in interactions between membrane surface proteins on leukocytes. Within the SIRP genes, polymorphic variants have been described in human subjects. By way of illustration, nucleotide and amino acid sequences of a human and mouse SIRP genes are provided in Table 1. Persons of skill upon reading this disclosure will recognize that one or more endogenous SIRP receptor genes in a genome (or all) can be replaced by one or more heterologous SIRP genes (e.g., polymorphic variants, subtypes or mutants, genes from another species, humanized forms, etc.).

A "SIRP-expressing cell" as used herein refers to a cell that expresses a signal-regulatory protein receptor. In some embodiments, a SIRP-expressing cell expresses a signal-regulatory protein receptor on its surface. In some embodiments, a SIRP protein expressed on the surface of the cell in an amount sufficient to mediate cell-to-cell interactions via the SIRP protein expressed on the surface of the cell. Exemplary SIRP-expressing cells include neurons, lymphocytes, myeloid cells, macrophages, neutrophils, and natural killer (NK) cells. SIRP-expressing cells regulate the interaction of immune cells to regulate the immune response to

various foreign antigens or pathogens. In some embodiments, non-human animals of the present invention demonstrate immune cell regulation via humanized SIRP receptors expressed on the surface of one more cells of the non-human animal.

The term "substantially" as used herein refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest. One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result. The term "substantially" is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.

The phrase "substantial homology" as used herein refers to a comparison between amino acid or nucleic acid sequences. As will be appreciated by those of ordinary skill in the art, two sequences are generally considered to be "substantially homologous" if they contain homologous 20 residues in corresponding positions. Homologous residues may be identical residues. Alternatively, homologous residues may be non-identical residues will appropriately similar structural and/or functional characteristics. For example, as is well known by those of ordinary skill in the art, certain 25 amino acids are typically classified as "hydrophobic" or "hydrophilic" amino acids, and/or as having "polar" or "non-polar" side chains. Substitution of one amino acid for another of the same type may often be considered a "homologous" substitution. Typical amino acid categoriza- 30 tions are summarized in Table 1 and 2.

TABLE 1

Alanine	Ala	A	nonpolar	neutral	1.8
Arginine	Arg	R	polar	positive	-4.5
Asparagine	Asn	N	polar	neutral	-3.5
Aspartic acid	Asp	D	polar	negative	-3.5
Cysteine	Cys	C	nonpolar	neutral	2.5
Glutamic acid	Glu	E	polar	negative	-3.5
Glutamine	Gln	Q	polar	neutral	-3.5
Glycine	Gly	Ĝ	nonpolar	neutral	-0.4
Histidine	His	Η	polar	positive	-3.2
Isoleucine	Ile	I	nonpolar	neutral	4.5
Leucine	Leu	L	nonpolar	neutral	3.8
Lysine	Lys	K	polar	positive	-3.9
Methionine	Met	M	nonpolar	neutral	1.9
Phenylalanine	Phe	F	nonpolar	neutral	2.8
Proline	Pro	P	nonpolar	neutral	-1.6
Serine	Ser	S	polar	neutral	-0.8
Threonine	Thr	T	polar	neutral	-0.7
Tryptophan	Trp	W	nonpolar	neutral	-0.9
Tyrosine	Tyr	Y	polar	neutral	-1.3
Valine	Val	V	nonpolar	neutral	4.2

TABLE 2

Ambiguous Amino Acids	3-Letter	1-Letter
Asparagine or aspartic acid	Asx	В
Glutamine or glutamic acid	Glx	Z
Leucine or Isoleucine	Xle	J
Unspecified or unknown amino acid	Xaa	X

As is well known in this art, amino acid or nucleic acid sequences may be compared using any of a variety of algorithms, including those available in commercial computer programs such as BLASTN for nucleotide sequences and BLASTP, gapped BLAST, and PSI-BLAST for amino 65 acid sequences. Exemplary such programs are described in Altschul, et al., Basic local alignment search tool, *J. Mol.*

14

Biol., 215(3): 403-410, 1990; Altschul, et al., Methods in Enzymology; Altschul, et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402, 1997; Baxevanis, et al., Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Wiley, 1998; and Misener, et al., (eds.), Bioinformatics Methods and Protocols (Methods in Molecular Biology, Vol. 132), Humana Press, 1999. In addition to identifying homologous sequences, the programs mentioned above typically provide an indication of the degree of homology. In some embodiments, two sequences are considered to be substantially homologous if at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of their corresponding residues are homologous over a relevant stretch of residues. In some embodiments, the relevant stretch is a complete sequence. In some embodiments, the relevant stretch is at least 9, 10, 11, 12, 13, 14, 15, 16, 17 or more residues. In some embodiments, the relevant stretch includes contiguous residues along a complete sequence. In some embodiments, the relevant stretch includes discontinuous residues along a complete sequence. In some embodiments, the relevant stretch is at least 10, 15, 20, 25, 30, 35, 40, 45, 50, or more residues.

The phrase "substantial identity" as used herein refers to a comparison between amino acid or nucleic acid sequences. As will be appreciated by those of ordinary skill in the art, two sequences are generally considered to be "substantially identical" if they contain identical residues in corresponding positions. As is well known in this art, amino acid or nucleic acid sequences may be compared using any of a variety of algorithms, including those available in commercial computer programs such as BLASTN for nucleotide sequences and BLASTP, gapped BLAST, and PSI-BLAST for amino 35 acid sequences. Exemplary such programs are described in Altschul, et al., Basic local alignment search tool, J. Mol. Biol., 215(3): 403-410, 1990; Altschul, et al., Methods in Enzymology; Altschul et al., Nucleic Acids Res. 25:3389-3402, 1997; Baxevanis et al., Bioinformatics: A Practical 40 Guide to the Analysis of Genes and Proteins, Wiley, 1998; and Misener, et al., (eds.), Bioinformatics Methods and Protocols (Methods in Molecular Biology, Vol. 132), Humana Press, 1999. In addition to identifying identical sequences, the programs mentioned above typically provide 45 an indication of the degree of identity. In some embodiments, two sequences are considered to be substantially identical if at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of their corresponding residues are identical 50 over a relevant stretch of residues. In some embodiments, the relevant stretch is a complete sequence. In some embodiments, the relevant stretch is at least 10, 15, 20, 25, 30, 35, 40, 45, 50, or more residues.

The phrase "targeting vector" or "targeting construct" as used herein refers to a polynucleotide molecule that comprises a targeting region. A targeting region comprises a sequence that is identical or substantially identical to a sequence in a target cell, tissue or animal and provides for integration of the targeting construct into a position within the genome of the cell, tissue or animal via homologous recombination. Targeting regions that target using site-specific recombinase recognition sites (e.g., loxP or Frt sites) are also included. In some embodiments, a targeting construct of the present invention further comprises a nucleic acid sequence or gene of particular interest, a selectable marker, control and or regulatory sequences, and other nucleic acid sequences that allow for recombination medi-

ated through exogenous addition of proteins that aid in or facilitate recombination involving such sequences. In some embodiments, a targeting construct of the present invention further comprises a gene of interest in whole or in part, wherein the gene of interest is a heterologous gene that 5 encodes a protein in whole or in part that has a similar function as a protein encoded by an endogenous sequence.

The term "variant", as used herein, refers to an entity that shows significant structural identity with a reference entity but differs structurally from the reference entity in the 10 presence or level of one or more chemical moieties as compared with the reference entity. In many embodiments, a variant also differs functionally from its reference entity. In general, whether a particular entity is properly considered to be a "variant" of a reference entity is based on its degree of 15 structural identity with the reference entity. As will be appreciated by those skilled in the art, any biological or chemical reference entity has certain characteristic structural elements. A variant, by definition, is a distinct chemical entity that shares one or more such characteristic structural 20 elements. To give but a few examples, a small molecule may have a characteristic core structural element (e.g., a macrocycle core) and/or one or more characteristic pendent moieties so that a variant of the small molecule is one that shares the core structural element and the characteristic pendent 25 moieties but differs in other pendent moieties and/or in types of bonds present (single vs. double, E vs. Z, etc) within the core, a polypeptide may have a characteristic sequence element comprised of a plurality of amino acids having designated positions relative to one another in linear or 30 three-dimensional space and/or contributing to a particular biological function, a nucleic acid may have a characteristic sequence element comprised of a plurality of nucleotide residues having designated positions relative to on another in linear or three-dimensional space. For example, a variant 35 polypeptide may differ from a reference polypeptide as a result of one or more differences in amino acid sequence and/or one or more differences in chemical moieties (e.g., carbohydrates, lipids, etc) covalently attached to the polypeptide backbone. In some embodiments, a variant polypep- 40 tide shows an overall sequence identity with a reference polypeptide that is at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, or 99%. Alternatively or additionally, in some embodiments, a variant polypeptide does not share at least one characteristic 45 sequence element with a reference polypeptide. In some embodiments, the reference polypeptide has one or more biological activities. In some embodiments, a variant polypeptide shares one or more of the biological activities of the reference polypeptide. In some embodiments, a variant 50 polypeptide lacks one or more of the biological activities of the reference polypeptide. In some embodiments, a variant polypeptide shows a reduced level of one or more biological activities as compared with the reference polypeptide. In many embodiments, a polypeptide of interest is considered 55 to be a "variant" of a parent or reference polypeptide if the polypeptide of interest has an amino acid sequence that is identical to that of the parent but for a small number of sequence alterations at particular positions. Typically, fewer than 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% 60 of the residues in the variant are substituted as compared with the parent. In some embodiments, a variant has 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 substituted residue as compared with a parent. Often, a variant has a very small number (e.g., fewer than 5, 4, 3, 2, or 1) number of substituted functional 65 residues (i.e., residues that participate in a particular biological activity). Furthermore, a variant typically has not

16

more than 5, 4, 3, 2, or 1 additions or deletions, and often has no additions or deletions, as compared with the parent. Moreover, any additions or deletions are typically fewer than about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 10, about 9, about 8, about 7, about 6, and commonly are fewer than about 5, about 4, about 3, or about 2 residues. In some embodiments, the parent or reference polypeptide is one found in nature. As will be understood by those of ordinary skill in the art, a plurality of variants of a particular polypeptide of interest may commonly be found in nature, particularly when the polypeptide of interest is an infectious agent polypeptide.

The term "vector", as used herein, refers to a nucleic acid molecule capable of transporting another nucleic acid to which it is associated. In some embodiment, vectors are capable of extra-chromosomal replication and/or expression of nucleic acids to which they are linked in a host cell such as a eukaryotic and/or prokaryotic cell. Vectors capable of directing the expression of operatively linked genes are referred to herein as "expression vectors."

The term "wild-type", as used herein, has its art-understood meaning that refers to an entity having a structure and/or activity as found in nature in a "normal" (as contrasted with mutant, diseased, altered, etc) state or context. Those of ordinary skill in the art will appreciate that wild type genes and polypeptides often exist in multiple different forms (e.g., alleles).

DETAILED DESCRIPTION

The present invention provides, among other things, improved and/or engineered non-human animals having humanized genetic material encoding a signal-regulatory protein (e.g., SIRPs) for assays in transplant engraftment, activation of phagocytosis and signal transduction. It is contemplated that such non-human animals provides an improvement in transplant engraftment of human cells. Therefore, the present invention is particularly useful for maintaining human hematopoietic cells in non-human animals. In particular, the present invention encompasses the humanization of a rodent SIRPa gene resulting in expression of a humanized protein on the plasma membrane surface of cells of the non-human animal. Such humanized proteins have the capacity to recognize engrafted human cells via engagement of humanized SIRPa proteins and ligands present on the surface of the engrafted human cells. In some embodiments, non-human animals of the present invention are capable of receiving transplanted human hematopoietic cells; in some embodiments, such non-human mammals develop and/or have an immune system comprising human cells. In some embodiments, humanized SIRPa proteins have sequence corresponding to amino acid residues 28-362 of a human SIRPa protein. In some embodiments, non-human animals of the present invention comprise an endogenous SIRPa gene that contains genetic material from the non-human animal and a heterologous species (e.g., a human). In some embodiments, non-human animals of the present invention comprise a humanized SIRPα gene, wherein the humanized SIRPα gene comprises exons 2, 3, and 4 of a human SIRPα gene.

Various aspects of the invention are described in detail in the following sections. The use of sections is not meant to limit the invention. Each section can apply to any aspect of the invention. In this application, the use of "or" means "and/or" unless stated otherwise.

Signal-Regulatory Protein (SIRP) Gene Family

Signal regulatory proteins (SIRPs) constitute a family of cell surface glycoproteins which are expressed on lymphocytes, myeloid cells (including macrophages, neutrophils, granulocytes, myeloid dendritic cells, and mast cells) and 5 neurons (e.g., see Barclay and Brown, 2006, Nat Rev Immunol 6, 457-464). There are several reported SIRP genes and they can be categorized by their respective ligands and types of signaling in which they are involved. SIRPa (also referred to as CD172A, SHPS1, P84, MYD-1, BIT and PTPNS1) is expressed on immune cells of the myeloid lineage and functions as an inhibitory receptor via an immunoreceptor tyrosine-based inhibitory motif (ITIM). SIRPα expression has also been observed on neurons. Reported ligands for SIRPα include, most notably, CD47, but also include surfactant proteins A and D. SIRPB (also referred to as CD172b) is expressed on macrophages and neutrophils, however, no known ligands have been reported. SIRPβ contains a short cytoplasmic region in comparison to SIRPα and is known to associate with a signaling component known as DNAX activation protein 12 (DAP12). Thus, SIRPβ is thought to be an activating receptor. SIRPγ (also referred to as CD172g and SIRPβ2) is expressed on lymphocytes and natural killer cells and also binds to CD47, however, no signaling function has been reported as the 25 cytoplasmic tail only contains four amino acids and lacks a sequence that would facilitate association with DAP12. Another member, SIRP8, has been described and exists as a soluble receptor.

The role of SIRP α , in particular, has been investigated in respect of its inhibitory role in the phagocytosis of host cells by macrophages. For example, CD47 binding to SIRP α on macrophages, triggers inhibitory signals that negatively regulates phagocytosis. Alternatively, positive signaling effects mediated through SIRP α binding have been reported (Shultz et al., 1995, J Immunol 154, 180-91).

SIRPa Sequences

Exemplary SIRP α sequences for human and mouse are set forth in Table 3. For cDNA sequences, consecutive exons are separated by alternating underlined text. For protein sequences, signal peptides are underlined and transmembrane and cytoplasmic sequences are italicized.

TABLE 3

Mouse SIRPa cDNA NM_007547.3 GCGCTCGGCCGGCCCCTCGCGCTGGCC TCGCGACGGCTCCGCACAGCCCGCACTCGC TCTGCGAGCTGTCCCCGCTCGCGCTTGCTC TCCGATCTCCGTCCCCGCTCCCTCTCCCTC TTCCTCTCCCCCTCTTTCCTTCTCCCTCGC TATCCGCTCCCCCGCCCCCGTGCCTCTGGC TCTGCGCCTGGCTCCCTCGGGTCCGCTCCC CTTTCCCGCCGGCCTGGCCCGGCGTCACGC TCCCGGAGTCTCCCCGCTCGGCGCGTCTC ATTGTGGGAGGGGGTCAGATCACCCCGCCG GGCGGTGGCGCTGGGGGGCAGCGGAGGGGG AGGGGCCTTAGTCGTTCGCCCGCGCCCCCC GCCCGCCTGCCGAGCGCGCTCACCGCCGCT CTCCCTCCTTGCTCTGCAGCCGCGGCCCAT GGAGCCCGCCGGCCCGGCCCT AGGGCCGCTGCTGCTCTGCCTGCTCTC CGCGTCCTGTTTCTGTACAGGAGCCACGGG GAAGGAACTGAAGGTGACTCAGCCTGAGAA ATCAGTGTCTGTTGCTGCTGGGGATTCGAC CGTTCTGAACTGCACTTTGACCTCCTTGTT GCCGGTGGGACCCATTAGGTGGTACAGAGG AGTAGGGCCAAGCCGGCTGTTGATCTACAG TTTCGCAGGAGAATACGTTCCTCGAATTAG AAATGTTTCAGATACTACTAAGAGAAACAA TATGGACTTTTCCATCCGTATCAGTAATGT CACCCCAGCAGATGCTGGCATCTACTACTG

50

18

TABLE 3-continued

TGTGAAGTTCCAGAAAGGATCATCAGAGCC TGACACAGAAATACAATCTGGAGGGGGAAC <u>AGAGGTCTATGTACTCG</u>CCAAACCTTCTCC ACCGGAGGTATCCGGCCCAGCAGACAGGGG CATACCTGACCAGAAAGTGAACTTCACCTG CAAGTCTCATGGCTTCTCTCCCCGGAATAT CACCCTGAAGTGGTTCAAAGATGGGCAAGA ACTCCACCCTTGGAGACCACCGTGAACCC TAGTGGAAAGAATGTCTCCTACAACATCTC CAGCACAGTCAGGGTGGTACTAAACTCCAT GGATGTTAATTCTAAGGTCATCTGCGAGGT AGCCCACATCACCTTGGATAGAAGCCCTCT TCGTGGGATTGCTAACCTGTCTAACTTCAT CCGAGTTTCACCCACCGTGAAGGTCACCCA ACAGTCCCCGACGTCAATGAACCAGGTGAA CCTCACCTGCCGGGCTGAGAGGTTCTACCC CGAGGATCTCCAGCTGATCTGGCTGGAGAA TGGAAACGTATCACGGAATGACACGCCCAA GAATCTCACAAAGAACACGGATGGGACCTA TAATTACACAAGCTTGTTCCTGGTGAACTC ATCTGCTCATAGAGAGGACGTGGTGTTCAC GTGCCAGGTGAAGCACGACCAACAGCCAGC GATCACCCGAAACCATACCGTGCTGGGATT TGCCCACTCGAGTGATCAAGGGAGCATGCA AACCTTCCCTGATAATAATGCTACCCACAA CTGGAATGTCTTCATCGGTGTGGGCGTGGC GTGTGCTTTGCTCGTAGTCCTGCTGATGGC TGCTCTCTACCTCCTCCGGATCAAACAGAA ${\tt GAAAG} \underline{{\tt CCAAGGGGTCAACATCTTCCACACG}}$ GTTGCACGAGCCCGAGAAGAACGCCAGGGA ${\tt AATAACCCAG} \underline{{\tt ATCCAGGACACAAATGACAT}}$ CAACGACATCACATACGCAGACCTGAATCT GCCCAAAGAGAAGAAGCCCGCACCCCGGGC CCCTGAGCCTAACAACCACACAGAATATGC AAGCATTGAGACAGGCAAAGTGCCTAGGCC AGAGGATACCCTCACCTATGCTGACCTGGA CATGGTCCACCTCAGCCGGGCACAGCCAGC CCCCAAGCCTGAGCCATCTTTCTCAGAGTA TGCTAGTGTCCAGGTCCAGAGGAAGTGAAT GGGGCTGTGGTCTGTACTAGGCCCCATCCC CACAAGTTTTCTTGTCCTACATGGAGTGGC CATGACGAGGACATCCAGCCAGCCAATCCT GTCCCCAGAAGGCCAGGTGGCACGGGTCCT AGGACCAGGGGTAAGGGTGGCCTTTGTCTT $\underline{\mathtt{CCCTCCGTGGCTCTTCAACACCTCTTGGGC}}$ ACCCACGTCCCCTTCTTCCGGAGGCTGGGT GTTGCAGAACCAGAGGGCGAACTGGAGAAA GCTGCCTGGAATCCAAGAAGTGTTGTGCCT CGGCCCATCACTCGTGGGTCTGGATCCTGG TCTTGGCAACCCCAGGTTGCGTCCTTGATG TTCCAGAGCTTGGTCTTCTGTGTGGAGAAG AGCTCACCATCTCTACCCAACTTGAGCTTT GGGACCAGACTCCCTTTAGATCAAACCGCC CCATCTGTGGAAGAACTACACCAGAAGTCA GCAAGTTTTCAGCCAACAGTGCTGGCCTCC CCACCTCCCAGGCTGACTAGCCCTGGGGAG AAGGAACCCTCTCCTCCTAGACCAGCAGAG ACTCCCTGGGCATGTTCAGTGTGGCCCCAC CTCCCTTCCAGTCCCAGCTTGCTTCCTCCA GCTAGCACTAACTCAGCAGCATCGCTCTGT GGACGCCTGTAAATTATTGAGAAATGTGAA CTGTGCAGTCTTAAAGCTAAGGTGTTAGAA AATTTGATTTATGCTGTTTAGTTGTTG GGTTTCTTTTCTTTTAATTTCTTTTCTT TTTTGATTTTTTTTTTTCCCTTAAAACAA CAGCAGCATCTTGGCTCTTTGTCATGT GTTGAATGGTTGGGTCTTGTGAAGTCTGAG **GTCTAACAGTTTATTGTCCTGGAAGGATTT** TCTTACAGCAGAAACAGATTTTTTCAAAT TCCCAGAATCCTGAGGACCAAGAAGGATCC CTCAGCTGCTACTTCCAGCACCCAGCGTCA CTGGGACGAACCAGGCCCTGTTCTTACAAG GCCACATGGCTGGCCCTTTGCCTCCATGGC TACTGTGGTAAGTGCAGCCTTGTCTGACCC AATGCTGACCTAATGTTGGCCATTCCACAT TGAGGGGACAAGGTCAGTGATGCCCCCCTT CACTCACAAGCACTTCAGAGGCATGCAGAG AGAAGGGACACTCGGCCAGCTCTCTGAGGT AATCAGTGCAAGGAGGAGTCCGTTTTTTGC CAGCAAACCTCAGCAGGATCACACTGGAAC

TABLE 3-continued

20TABLE 3-continued

TTTCTGCTCTCAAACCCTACTGGGATCAAA

CTGGAATAAATTGAAGACAGCCAGGGGGAT

AGAACCTGGTCATACCTGTGACAACACAGC CTCTCAGACTTCCAGACCAACGTGGACCCC TGTGAGCCAGGGCAAACCACCCACTGTCAC GTAGGAGAGCGTGTCCTACAGCATCCAC TGGCTCGAGAGTCTGGGCAGAGGCTCTGAC AGCACAGCCAAGGTGGTGCTGACCCGCGAG CCTCCACCCTTTAAACTGGATGCCGGGGCC 5 GACGTTCACTCTCAAGTCATCTGCGAGGTG GCCCACGTCACCTTGCAGGGGGACCCTCTT TGGCTGGGCCCAATGCCAAGTGGTTATGGC AACCCTGACTATCTGGTCTTAACATGTAGC CGTGGGACTGCCAACTTGTCTGAGACCATC TCAGGAAGTGGAGGCGCTAATGTCCCCAAT CGAGTTCCACCCACCTTGGAGGTTACTCAA CCCTGGGGATTCCTGATTCCAGCTATTCAT CAGCCCGTGAGGGCAGAGAACCAGGTGAAT GTAAGCAGAGCCAACCTGCCTATTTCTGTA GTCACCTGCCAGGTGAGGAAGTTCTACCCC CAGAGACTACAGCTGACCTGGTTGGAGAAT GGTGCGACTGGGATGTTAGGAGCACAGCAA 10 GGAAACGTGTCCCGGACAGAAACGGCCTCA GGACCCAGCTCTGTAGGGCTGGTGACCTGA TACTTCTCATAATGGCATCTAGAAGTTAGG ACCGTTACAGAGAACAAGGATGGTACCTAC CTGAGTTGGCCTCACTGGCCCAGCAAACCA AACTGGATGAGCTGGCTCCTGGTGAATGTA GAACTTGTCTTTGTCCGGGCCATGTTCTTG TCTGCCCACAGGGATGATGTGAAGCTCACC TGCCAGGTGGAGCATGACGGGCAGCCAGCG GGCTGTCTTCTAATTCCAAAGGGTTGGTTG GTCAGCAAAAGCCATGACCTGAAGGTCTCA GTAAAGCTCCACCCCTTCTCCTCTGCCTA 15 GCCCACCCGAAGGAGCAGGGCTCAAATACC AAGACATCACATGTGTATACACACACGGGT GCCGCTGAGAACACTGGATCTAATGAACGG GTATAGATGAGTTAAAAGAATGTCCTCGCT AACATCTATATTGTGGTGGGTGTGGTGTGC GGCATCCTAATTTTGTCTTAAGTTTTTTTG GAGGGAGAAGGAACAAGGCAAGGGAAGAT ACCTTGCTGGTGGCCCTACTGATGGCGGCC GTGTAGCTTTGGCTTTAACCAGGCAGCCTG CTCTACCTCGTCCGAATCAGACAGAAGAAA GCCCAGGGCTCCACTTCTTCTACAAGGTTG GGGGCTCCCAAGCCTATGGAACCCTGGTAC 20 CATGAGCCCGAGAAATGCCAGAGAAATA AAAGAAGAGAACAGAAGCGCCCTGTGAGGA <u>ACACAG</u>GACACAAATGATATCACATATGCA GTGGGATTTGTTTTTCTGTAGACCAGATGA GACCTGAACCTGCCCAAGGGGAAGAAGCCT GAAGGAAACAGGCCCTGTTTTGTACATAGT TGCAACTTAAAATTTTTGGCTTGCAAAATA GCTCCCCAGGCTGCGGAGCCCAACAACCAC ACGGAGTATGCCAGCATTCAGACCAGCCCG TTTTTGTAATAAAGATTTCTGGGTAACAAT AAAAAAAAAAAAAA CAGCCCGCGTCGGAGGACACCCTCACCTAT 25 (SEQ ID NO: 1) GCTGACCTGGACATGGTCCACCTCAACCGG ACCCCCAAGCAGCCGGCCCCCAAGCCTGAG Mouse SIRP α MEPAGPAPGRLGPLLLCLLLSASCFCTGAT CCGTCCTTCTCAGAGTACGCCAGCGTCCAG Protein GKELKVTQPEKSVSVAAGDSTVLNCTLTSL $\tt GTCCCGAGGAAGTGAATGGGACCGTGGTTT$ NP_031573.2 LPVGPIRWYRGVGPSRLLIYSFAGEYVPRI GCTCTAGCACCCATCTCTACGCGCTTTCTT RNVSDTTKRNNMDFSIRISNVTPADAGIYY GTCCCACAGGGAGCCGCCGTGATGAGCACA CVKFQKGSSEPDTEIQSGGGTEVYVLAKPS GCCAACCCAGTTCCCGGAGGGCTGGGGCGG ${\tt PPEVSGPADRGIPDQKVNFTCKSHGFSPRN}$ ${\tt TGCAGGCTCTGGGACCCAGGGGCCAGGGTG}$ ITLKWFKDGQELHPLETTVNPSGKNVSYNI GCTCTTCTCCCCACCCCTCCTTGGCTCT SSTVRVVLNSMDVNSKVICEVAHITLDRSP CCAGCACTTCCTGGGCAGCCACGGCCCCCT LRGIANLSNFIRVSPTVKVTQQSPTSMNQV CCCCCACATTGCCACATACCTGGAGGCTG NLTCRAERFYPEDLQLIWLENGNVSRNDTP ACGTTGCCAAACCAGCCAGGGAACCAACCT KNLTKNTDGTYNYTSLFLVNSSAHREDVVF GGGAAGTGGCCAGAACTGCCTGGGGTCCAA GAACTCTTGTGCCTCCGTCCATCACCATGT TCQVKHDQQPAITRNHTVLGFAHSSDQGSM QTFPDNNATHNWNVFIGVGVACALLVVLLM GGGTTTTGAAGACCCTCGACTGCCTCCCCG AALYLLRIKQKKAKGSTSSTRLHEPEKNAR ATGCTCCGAAGCCTGATCTTCCAGGGTGGG EITQIQDTNDINDITYADLNLPKEKKPAPR GAGGAGAAATCCCACCTCCCCTGACCTCC *APEPNNHTEYASIETGKVPRPEDTLTYADL* ACCACCTCCACCACCACCACCACCACCACC DMVHLSRAQPAPKPEPSFSEYASVQVQRK ACCACCACTACCACCACCCAACTGGGG 40 (SEQ ID NO: 2) CTAGAGTGGGGAAGATTTCCCCTTTAGATC AAACTGCCCCTTCCATGGAAAAGCTGGAAA Human SIRP α TCCGGCCCGCACCCCCAAGAGGGGCC AAAACTCTGGAACCCATATCCAGGCTTGGT TTCAGCTTTGGGGCTCAGAGGCACGACCTC GAGGTTGCTGCCAACAGTCCTGGCCTCCCC NM 001040022.1 CTGGGGAGGTTAAAAGGCAGACGCCCCCC CATCCCTAGGCTAAAGAGCCATGAGTCCTG CGCCCCCGCGCCCCGGCCCCGACTCCT GAGGAGGAGGACCCCTCCCAAAGGACTG TCGCCGCCTCCAGCCTCTCGCCAGTGGGAA GAGACAAAACCCTCTGCTTCCTTGGGTCCC GCGGGGAGCAGCCGCGCGGGCCGGAGTCCGG TCCAAGACTCCCTGGGGCCCAACTGTGTTG AGGCGAGGGGGGGTCGGCCGCAACTTCCCC CTCCACCGGACCCATCTCTCCCTTCTAGA GGTCCACCTTAAGAGGACGATGTAGCCAGC CCTGAGCTTGCCCCTCCAGCTAGCACTAAG TCGCAGCGCTGACCTTAGAAAAACAAGTTT CAACATCTCGCTGTGGACGCCTGTAAATTA GCGCAAAGTGGAGCGGGGACCCGGCCTCTG CTGAGAAATGTGAAACGTGCAATCTTGAAA GGCAGCCCGGCGCGCTTCCAGTGCCTTC CTGAGGTGTTAGAAAACTTGATCTGTGGTG 50 CAGCCTCGCGGGCGGCGCAGCCGCGGCCC TTTTGTTTTTTTTTTTTTAAAACAACA ATGGAGCCGGCCGGCCGGCCGC GCAACGTGATCTTGGCTGTCTGTCATGTGT TGAAGTCCATGGTTGGGTCTTGTGAAGTCT CTCGGGCCGCTGCTCTGCCTGCTCGCC GAGGTTTAACAGTTTGTTGTCCTGGAGGGA GCGTCCTGCGCCTGGTCAGGAGTGGCGGGT GAGGAGGAGCTGCAGGTGATTCAGCCTGAC TTTTCTTACAGCGAAGACTTGAGTTCCTCC AAGTCCCAGAACCCCAAGAATGGGCAAGAA AAGTCCGTGTTGGTTGCAGCTGGAGAGACA 55 GCCACTCTGCGCTGCACTGCGACCTCTCTG GGATCAGGTCAGCCACTCCCTGGAGACACA ATCCCTGTGGGGCCCATCCAGTGGTTCAGA GCCTTCTGGCTGGGACTGACTTGGCCATGT GGAGCTGGACCAGGCCGGGAATTAATCTAC TCTCAGCTGAGCCACGCGGCTGGTAGTGCA AATCAAAAAGAAGGCCACTTCCCCCGGGTA GCCTTCTGTGACCCCGCTGTGGTAAGTCCA ACAACTGTTTCAGACCTCACAAAGAGAAAC GCCTGCCCAGGGCTGCTGAGGGCTGCCTCT AACATGGACTTTTCCATCCGCATCGGTAAC TGACAGTGCAGTCTTATCGAGACCCAATGC 60 ATCACCCCAGCAGATGCCGGCACCTACTAC CTCAGTCTGCTCATCCGTAAAGTGGGGATA TGTGTGAAGTTCCGGAAAGGGAGCCCCGAT GTGAAGATGACACCCCTCCCCACCACCTCT GACGTGGAGTTTAAGTCTGGAGCAGGCACT CATAAGCACTTTAGGAACACACAGAGGGTA ${\tt GAGCTGTCTGTGCGCG}\underline{{\tt CCAAACCCTCTGCC}}$ GGGATAGTGGCCCTGGCCGTCTATCCTACC CCCGTGGTATCGGGCCCTGCGGCGAGGGCC CCTTTAGTGACCGCCCCCATCCCGGCTTTC ACACCTCAGCACACAGTGAGCTTCACCTGC TGAGCTGATCCTTGAAGAAGAAATCTTCCA

GAGTCCCACGGCTTCTCACCCAGAGACATC

ACCCTGAAATGGTTCAAAAATGGGAATGAG

19

GGTGCAGCTGTGAAGCTCGGGCTGATTCCC CCTCTGTCCCAGAAGGTTGGCCAGAGGGTG TGACCCAGTTACCCTTTAACCCCCACCCTT CCAGTCGGGTGTGAGGGCCTGACCGGGCCC AGGGCAAGCAGATGTCGCAAGCCCTATTTA TTCAGTCTTCACTATAACTCTTAGAGTTGA GACGCTAATGTTCATGACTCCTGGCCTTGG GATGCCCAAGGGATTTCTGGCTCAGGCTGT AAAAGTAGCTGAGCCATCCTGCCCATTCCT GGAGGTCCTACAGGTGAAACTGCAGGAGCT CAGCATAGACCCAGCTCTCTGGGGGATGGT CACCTGGTGATTTCAATGATGGCATCCAGG AATTAGCTGAGCCAACAGACCATGTGGACA GCTTTGGCCAGAGCTCCCGTGTGGCATCTG GGAGCCACAGTGACCCAGCCACCTGGCTCA GGCTAGTTCCAAATTCCAAAAGATTGGCTT GTAAACCTTCGTCTCCCTCTCTTTTACCCA GAGACAGCACATACGTGTGCACACGCATGC ACACACACATTCAGTATTTTAAAAGAATGT TTTCTTGGTGCCATTTTCATTTTATTTAT TTTTTAATTCTTGGAGGGGGAAATAAGGGA ATAAGGCCAAGGAAGATGTATAGCTTTAGC TTTAGCCTGGCAACCTGGAGAATCCACATA CCTTGTGTATTGAACCCCAGGAAAAGGAAG AGGTCGAACCAACCCTGCGGAAGGAGCATG GTTTCAGGAGTTTATTTTAAGACTGCTGGG AAGGAAACAGGCCCCATTTTGTATATAGTT GCAACTTAAACTTTTTGGCTTGCAAAATAT TTTTGTAATAAAGATTTCTGGGTAATAATG A (SEQ ID NO: 3)

Human SIRPα Protein NP_001035111.1

MEPAGPAPGRLGPLLCLLLAASCAWSGVAG EEELOVIOPDKSVLVAAGETATLRCTATSL IPVGPIQWFRGAGPGRELIYNQKEGHFPRV TTVSDLTKRNNMDFSIRIGNITPADAGTYY CVKFRKGSPDDVEFKSGAGTELSVRAKPSA PVVSGPAARATPQHTVSFTCESHGFSPRDI TLKWFKNGNELSDFOTNVDPVGESVSYSIH STAKVVLTREDVHSQVICEVAHVTLQGDPL RGTANLSETIRVPPTLEVTQQPVRAENQVN VTCQVRKFYPQRLQLTWLENGNVSRTETAS TVTENKDGTYNWMSWLLVNVSAHRDDVKLT CQVEHDGQPAVSKSHDLKVSAHPKEQGSNT AAENTGSNERNIYIVVGVVCTLLVALLMAA LYLVRIRQKKAQGSTSSTRLHEPEKNAREI TQDTNDI TYADLNLPKGKKPAPQAAEPNNH TEYASIOTSPOPASEDTLTYADLDMVHLNR TPKQPAPKPEPSFSEYASVQVPRK (SEO ID NO: 4)

Humanized SIRP α Protein

MEPAGPAPGRLGPLLLCLLLSASCFCTGVA GEEELQVIQPDKSVLVAAGETATLRCTATS LIPVGPIQWFRGAGPGRELIYNQKEGHFPR VTTVSDLTKRNNMDFSIRIGNITPADAGTY YCVKFRKGSPDDVEFKSGAGTELSVRAKPS APVVSGPAARATPQHTVSFTCESHGFSPRD ITLKWFKNGNELSDFQTNVDPVGESVSYSI HSTAKVVLTREDVHSQVICEVAHVTLQGDP LRGTANLSETIRVPPTLEVTOOPVRAENOV NVTCOVRKFYPORLOLTWLENGNVSRTETA STVTENKDGTYNWMSWLLVNVSAHRDDVKL TCOVEHDGOPAVSKSHDLKVSAHPKEOGSN TAADNNATHNWNVFIGVGVACALLVVLLMA ALYLLRIKOKKAKGSTSSTRLHEPEKNARE ITQIQDTNDINDITYADLNLPKEKKPAPRAPEPNNHTEYASIETGKVPRPEDTLTYADLD MVHLSRAQPAPKPEPSFSEYASVQVQRK (SEO ID NO: 5)

Humanized SIRPa Non-Human Animals

Non-human animals are provided that express humanized SIRP α proteins on the surface of immune cells (e.g., myeloid cells) of the non-human animals resulting from a genetic modification of an endogenous locus of the non-human animal that encodes a SIRP α protein. Suitable 65 examples described herein include rodents, in particular, mice.

A humanized SIRP α gene, in some embodiments, comprises genetic material from a heterologous species (e.g., humans), wherein the humanized SIRP α gene encodes a SIRP α protein that comprises the encoded portion of the genetic material from the heterologous species. In some embodiments, a humanized SIRP α gene of the present invention comprises genomic DNA of a heterologous species that corresponds to the extracellular portion of a SIRP α protein that is expressed on the plasma membrane of a cell. Non-human animals, embryos, cells and targeting constructs for making non-human animals, non-human embryos, and cells containing said humanized SIRP α gene are also provided.

In some embodiments, an endogenous SIRP α gene is deleted. In some embodiments, an endogenous SIRPa gene is altered, wherein a portion of the endogenous SIRP α gene is replaced with a heterologous sequence (e.g., a human SIRP α sequence in whole or in part). In some embodiments, all or substantially all of an endogenous SIRPa gene is 20 replaced with a heterologous gene (e.g., a human SIRPα gene). In some embodiments, a portion of a heterologous SIRPα gene is inserted into an endogenous non-human $SIRP\alpha$ gene at an endogenous $SIRP\alpha$ locus. In some embodiments, the heterologous gene is a human gene. In some embodiments, the modification or humanization is made to one of the two copies of the endogenous SIRPα gene, giving rise to a non-human animal is heterozygous with respect to the humanized SIRPa gene. In other embodiments, a non-human animal is provided that is homozygous for a humanized SIRPα gene.

A non-human animal of the present invention contains a human SIRP α gene in whole or in part at an endogenous non-human SIRP α locus. Thus, such non-human animals can be described as having a heterologous SIRP gene. The replaced, inserted or modified SIRP α gene at the endogenous SIRP α locus can be detected using a variety of methods including, for example, PCR, Western blot, Southern blot, restriction fragment length polymorphism (RFLP), or a gain or loss of allele assay. In some embodiments, the non-human animal is heterozygous with respect to the humanized SIRP α gene

In various embodiments, a humanized SIRP α gene according to the present invention includes a SIRP α gene that has a second, third and fourth exon each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a second, third and fourth exon that appear in a human SIRP α gene of Table 3.

In various embodiments, a humanized SIRPα gene according to the present invention includes a SIRPα gene that has a nucleotide coding sequence (e.g., a cDNA sequence) at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to nucleotides 352-1114 that appear in a human SIRPα cDNA sequence of Table 3.

In various embodiments, a humanized SIRP α protein produced by a non-human animal of the present invention has an extracellular portion having a sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an extracellular portion of a human SIRP α protein that appears in Table 3.

In various embodiments, a humanized SIRP α protein produced by a non-human animal of the present invention has an extracellular portion having a sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or

more) identical to amino acid residues 28-362 that appear in a human SIRP α protein of Table 3.

In various embodiments, a humanized SIRP α protein produced by a non-human animal of the present invention has an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an amino acid sequence of a humanized SIRP α protein that appears in Table 3.

Compositions and methods for making non-human ani- 10 mals that expresses a humanized SIRPα protein, including specific polymorphic forms or allelic variants (e.g., single amino acid differences), are provided, including compositions and methods for making non-human animals that expresses such proteins from a human promoter and a 15 human regulatory sequence. In some embodiments, compositions and methods for making non-human animals that expresses such proteins from an endogenous promoter and an endogenous regulatory sequence are also provided. The methods include inserting the genetic material encoding a 20 human SIRPa protein in whole or in part at a precise location in the genome of a non-human animal that corresponds to an endogenous SIRPa gene thereby creating a humanized SIRP α gene that expresses a SIRP α protein that is human in whole or in part. In some embodiments, the 25 methods include inserting genomic DNA corresponding to exons 2-4 of a human SIRPa gene into an endogenous SIRPα gene of the non-human animal thereby creating a humanized gene that encodes a SIRPa protein that contains a human portion containing amino acids encoded by the 30 inserted exons.

A humanized SIRP α gene approach employs a relatively minimal modification of the endogenous gene and results in natural SIRP α -mediated signal transduction in the nonhuman animal, in various embodiments, because the 35 genomic sequence of the SIRP α sequences are modified in a single fragment and therefore retain normal functionality by including necessary regulatory sequences. Thus, in such embodiments, the SIRP α gene modification does not affect other surrounding genes or other endogenous SIRP genes. 40 Further, in various embodiments, the modification does not affect the assembly of a functional receptor on the plasma and maintains normal effector functions via binding and subsequent signal transduction through the cytoplasmic portion of the receptor which is unaffected by the modification. 45

A schematic illustration (not to scale) of an endogenous murine SIRP α gene and a humanized SIRP α gene is provided in FIG. 1. As illustrated, genomic DNA containing exons 2-4 of a human SIRP α gene is inserted into an endogenous murine SIRP α gene locus by a targeting construct. This genomic DNA includes comprises the portion of the gene that encodes an extracellular portion (e.g., amino acid resides 28-362) of a human SIRP α protein responsible for ligand binding.

A non-human animal (e.g., a mouse) having a humanized 55 SIRP α gene at the endogenous SIRP α locus can be made by any method known in the art. For example, a targeting vector can be made that introduces a human SIRP α gene in whole or in part with a selectable marker gene. FIG. 1 illustrates a mouse genome comprising an insertion of exons 2-4 of a 60 human SIRP α . As illustrated, the targeting construct contains a 5' homology arm containing sequence upstream of exon 2 of an endogenous murine SIRP α gene, followed by a genomic DNA fragment containing exons 2-4 of a human SIRP α gene, a drug selection cassette (e.g., a neomycin 65 resistance gene flanked on both sides by loxP sequences), and a 3' homology arm containing sequence downstream of

24

exons 4 of an endogenous murine SIRP α gene. Upon homologous recombination, exons 2-4 of an endogenous murine SIRP α gene is replaced by the sequence contained in the targeting vector. A humanized SIRP α gene is created resulting in a cell or non-human animal that expresses a humanized SIRP α protein that contains amino acids encoded by exons 2-4 of a human SIRP α gene. The drug selection cassette may optionally be removed by the subsequent addition of a recombinase (e.g., by Cre treatment).

In addition to mice having humanized SIRP α genes as described herein, also provided herein are other genetically modified non-human animals that comprise humanized SIRP α genes. In some embodiments, such non-human animals comprise a humanized SIRP α gene operably linked to an endogenous SIRP α promoter. In some embodiments, such non-human animals express a humanized SIRP α protein from an endogenous locus, wherein the humanized SIRP α protein comprises amino acid residues 28-362 of a human SIRP α protein.

Such non-human animals may be selected from the group consisting of a mouse, rat, rabbit, pig, bovine (e.g., cow, bull, buffalo), deer, sheep, goat, chicken, cat, dog, ferret, primate (e.g., marmoset, rhesus monkey). For the non-human animals where suitable genetically modifiable ES cells are not readily available, other methods are employed to make a non-human animal comprising genetic modifications as described herein. Such methods include, e.g., modifying a non-ES cell genome (e.g., a fibroblast or an induced pluripotent cell) and employing nuclear transfer to transfer the modified genome to a suitable cell, e.g., an oocyte, and gestating the modified cell (e.g., the modified oocyte) in a non-human animal under suitable conditions to form an embryo.

In some embodiments, a non-human animal of the present invention is a mammal. In some embodiments, a non-human animal of the present invention is a small mammal, e.g., of the superfamily Dipodoidea or Muroidea. In some embodiments, a genetically modified animal of the present invention is a rodent. In some embodiments, a rodent of the present invention is selected from a mouse, a rat, and a hamster. In some embodiments, a rodent of the present invention is selected from the superfamily Muroidea. In some embodiments, a genetically modified animal of the present invention is from a family selected from Calomyscidae (e.g., mouse-like hamsters), Cricetidae (e.g., hamster, New World rats and mice, voles), Muridae (true mice and rats, gerbils, spiny mice, crested rats), Nesomyidae (climbing mice, rock mice, with-tailed rats, Malagasy rats and mice), Platacanthomyidae (e.g., spiny dormice), and Spalacidae (e.g., mole rates, bamboo rats, and zokors). In some certain embodiments, a genetically modified rodent of the present invention is selected from a true mouse or rat (family Muridae), a gerbil, a spiny mouse, and a crested rat. In some certain embodiments, a genetically modified mouse of the present invention is from a member of the family Muridae. In some embodiment, an non-human animal of the present invention is a rodent. In some certain embodiments, a rodent of the present invention is selected from a mouse and a rat. In some embodiments, a non-human animal of the present invention is a mouse.

In some embodiments, a non-human animal of the present invention is a rodent that is a mouse of a C57BL strain selected from C57BL/A, C57BL/An, C57BL/GrFa, C57BL/KaLwN, C57BL/6, C57BL/6J, C57BL/6ByJ, C57BL/6NJ, C57BL/10, C57BL/10ScSn, C57BL/10Cr, and C57BL/Ola. In some certain embodiments, a mouse of the present invention is a 129 strain selected from the group consisting

of a strain that is 129P1, 129P2, 129P3, 129X1, 129S1 (e.g., 129S1/SV, 129S1/SvIm), 129S2, 129S4, 129S5, 129S9/ SvEvH, 129/SvJae, 129S6 (129/SvEvTac), 129S7, 129S8, 129T1, 129T2 (see, e.g., Festing et al., 1999, Mammalian Genome 10:836; Auerbach et al., 2000, Biotechniques 5 29(5):1024-1028, 1030, 1032). In some certain embodiments, a genetically modified mouse of the present invention is a mix of an aforementioned 129 strain and an aforementioned C57BL/6 strain. In some certain embodiments, a mouse of the present invention is a mix of aforementioned 129 strains, or a mix of aforementioned BL/6 strains. In some certain embodiments, a 129 strain of the mix as described herein is a 129S6 (129/SvEvTac) strain. In some embodiments, a mouse of the present invention is a BALB strain, e.g., BALB/c strain. In some embodiments, a mouse 15 of the present invention is a mix of a BALB strain and another aforementioned strain.

In some embodiments, a non-human animal of the present invention is a rat. In some certain embodiments, a rat of the present invention is selected from a Wistar rat, an LEA 20 strain, a Sprague Dawley strain, a Fischer strain, F344, F6, and Dark Agouti. In some certain embodiments, a rat strain as described herein is a mix of two or more strains selected from the group consisting of Wistar, LEA, Sprague Dawley, Fischer, F344, F6, and Dark Agouti.

Methods Employing Non-Human Animals Having Humanized SIRPα Genes

SIRPα mutant and transgenic non-human animals (e.g., mice) have been reported (Inagaki et al., 2000, EMBO Journal 19(24):6721-6731; Strowig et al., 2011, Proc. Nat. 30 Acad. Sci. 108(32):13218-13223). Such animals have been employed in a variety of assays to determine the molecular aspects of SIRPa expression, function and regulation. However, they are not without limitation. For example, use of SIRPa mutant mice have been limited due to deleterious 35 health conditions resulting from an inability of cells containing the mutant form of SIRP α to signal. Further, because CD47, a ligand for SIRPα, might be present on the same cell as the mutant form of SIRPa and both proteins are capable of providing intracellular signals, it is not possible to dis- 40 tinguish if such results are from lack of SIRPa signaling or lack of CD47 binding. In the case of human SIRPα transgenic mice, mouse SIRPa is intact and functional. Thus, SIRPα-dependent functions in various biological processes (e.g., engraftment) cannot be clearly attributed to either 45 human SIRP α or mouse SIRP α function alone in these mice as both the human and mouse SIRPa receptors are present and functional.

Non-human animals of the present invention provide an improved in vivo system and source of biological materials 50 (e.g., cells) expressing human SIRP α that are useful for a variety of assays. In various embodiments, non-human animals of the present invention are used to develop therapeutics that target SIRP α and/or modulate SIRP α -CD47 signaling. In various embodiments, mice of the present 55 invention are used to screen and develop candidate therapeutics (e.g., antibodies) that bind to human SIRP α . In various embodiments, non-human animals of the present invention are used to determine the binding profile of antagonists and/or agonists a humanized SIRP α on the 60 surface of a cell of a non-human animal as described herein.

In various embodiments, non-human animals of the present invention are used to measure the therapeutic effect of blocking or modulating SIRP α signal transduction (e.g., phosphorylation) and the effect on gene expression as a 65 result of cellular changes. In various embodiments, a non-human animal of the present invention of cells isolated

26

therefrom are exposed to a candidate therapeutic that binds to a human SIRP α on the surface of a cell of the non-human animal and, after a subsequent period of time, analyzed for effects on SIRP α -dependent processes, for example, B and/ or T cell proliferation, clearance of platelets, and induction of cytokine expression.

Non-human animals of the present invention express humanized SIRPa protein, thus cells, cell lines, and cell cultures can be generated to serve as a source of humanized SIRPα for use in binding and functional assays, e.g., to assay for binding or function of a SIRPa antagonist or agonist, particularly where the antagonist or agonist is specific for a human SIRP α sequence or epitope. In various embodiments, a humanized SIRPa protein expressed by a non-human animal as described herein may comprise a variant amino acid sequence. Variant human SIRPα proteins having variations associated with ligand binding residues have been reported. In various embodiments, non-human animals of the present invention express a humanized SIRP α protein variant. In various embodiments, the variant is polymorphic at an amino acid position associated with ligand binding. In various embodiments, non-human animals of the present invention are used to determine the effect of ligand binding through interaction with a polymorphic variant of human SIRPa.

Cells from non-human animals of the present invention can be isolated and used on an ad hoc basis, or can be maintained in culture for many generations. In various embodiments, cells from a non-human animal of the present invention are immortalized and maintained in culture indefinitely (e.g., in serial cultures).

In various embodiments, cells of non-human animals of the present invention are used in a cell migration or spreading assay to screen and develop candidate therapeutics that modulate human SIRPα. Such processes are necessary for many cellular processes including wound healing, differentiation, proliferation and survival.

In various embodiments, cells of non-human animals of the present invention are used in clonal assays for mega-karyocytic colony-forming cells for testing the pharmacotoxicological aspects of candidate therapeutics that target human $SIRP\alpha$.

In various embodiments, cells of non-human animals of the present invention are used in phagocytosis assays to determine the therapeutic potential of compounds or biological agents to modulate SIRP α -dependent regulation of phagocytosis.

Non-human animals of the present invention provide an in vivo system for the analysis and testing of a drug or vaccine. In various embodiments, a candidate drug or vaccine may be delivered to one or more non-human animals of the present invention, followed by monitoring of the non-human animals to determine one or more of the immune response to the drug or vaccine, the safety profile of the drug or vaccine, or the effect on a disease or condition. Such drugs or vaccines may be improved and/or developed in such non-human animals

Non-human animals of the present invention provide improved in vivo system elucidating mechanisms of human cell-to-cell interaction through adoptive transfer. In various embodiments, non-human animals of the present invention may by implanted with a tumor xenograft, followed by a second implantation of tumor infiltrating lymphocytes could be implanted in the non-human animals by adoptive transfer to determine the effectiveness in eradication of solid tumors or other malignancies. Such experiments may be done with human cells due to the exclusive presence of human SIRP α

without competition with endogenous SIRP α of the non-human animal. Further, therapies and pharmaceuticals for use in xenotransplantation can be improved and/or developed in such non-human animals.

Non-human animals of the present invention provide an 5 improved in vivo system for maintenance and development of human hematopoietic stem cells through engraftment. In various embodiments, non-human animals of the present invention provide improved development and maintenance of human stem cells within the non-human animal. In 10 various embodiments, increased populations of differentiated human B and T cells are observed in the blood, bone marrow, spleen and thymus of the non-human animal. In various embodiments, non-human animals of the present invention provide an increase in the level of engraftment of 15 human cells as compared to non-human animals that express both mouse and human SIRP α .

Non-human animals of the present invention can be employed to assess the efficacy of a therapeutic drug targeting human cells. In various embodiments, a non-human animal of the present invention is transplanted with human cells, and a drug candidate targeting such human cells is administered to such animal. The therapeutic efficacy of the drug is then determined by monitoring the human cells in the non-human animal after the administration of the drug. 25 Drugs that can be tested in the non-human animals include both small molecule compounds, i.e., compounds of molecular weights of less than 1500 kD, 1200 kD, 1000 kD, or 800 dalton, and large molecular compounds (such as proteins, e.g., antibodies), which have intended therapeutic 30 effects for the treatment of human diseases and conditions by targeting (e.g., binding to and/or acting on) human cells.

In some embodiments, the drug is an anti-cancer drug, and the human cells are cancer cells, which can be cells of a primary cancer or cells of cell lines established from a primary cancer. In these embodiments, a non-human animal of the present invention is transplanted with human cancer cells, and an anti-cancer drug is given to the non-human animal. The efficacy of the drug can be determined by assessing whether growth or metastasis of the human cancer cells in the non-human animal is inhibited as a result of the administration of the drug.

251 and Valenzuela et al. (2003) High-throughput enging of the mouse genome coupled with high-resc expression analysis, Nature Biotech. 21(6):652-659).

Briefly, mouse bacterial artificial chromosome containing exons 2 to 4 of an endogenous SIRPα gene using language in the non-human animal is inhibited as a result of the administration of the drug.

In specific embodiments, the anti-cancer drug is an antibody molecule which binds to an antigen on human cancer cells. In particular embodiments, the anti-cancer drug is a 45 bispecific antibody that binds to an antigen on human cancer cells, and to an antigen on other human cells, for example, cells of the human immune system (or "human immune cells") such as B cells and T cells.

In some embodiments, a non-human animal of the present 50 invention is engrafted with human immune cells or cells that differentiate into human immune cells. Such non-human animal with engrafted human immune cells is transplanted with human cancer cells, and is administered with an anticancer drug, such as a bispecific antibody that binds to an 55 antigen on human cancer cells and to an antigen on human immune cells (e.g., T-cells). The therapeutic efficacy of the bispecific antibody can be evaluated based on its ability to inhibit growth or metastasis of the human cancer cells in the non-human animal. In a specific embodiment, the non- 60 human animal of the present invention is engrafted with human CD34+ hematopoietic progenitor cells which give rise to human immune cells (including T cells, B cells, NK cells, among others). Human B cell lymphoma cells (e.g., Raji cells) are transplanted into such non-human animal with 65 engrafted human immune cells, which is then administered with a bispecific antibody that binds to CD20 (an antigen on

28

normal B cells and certain B cell malignancies) and to the CD3 subunit of the T-cell receptor, to test the ability of the bispecific antibody to inhibit tumor growth in the non-human animal.

EXAMPLES

The following examples are provided so as to describe to those of ordinary skill in the art how to make and use methods and compositions of the invention, and are not intended to limit the scope of what the inventors regard as their invention. Unless indicated otherwise, temperature is indicated in Celsius, and pressure is at or near atmospheric.

Example 1

Humanization of an Endogenous Signal-Regulatory Protein (SIRP) Gene

This example illustrates exemplary methods of humanizing an endogenous gene encoding signal-regulatory protein alpha (SIRP α) in a non-human mammal such as a rodent (e.g., a mouse). Human SIRP α is known to exist in at least 10 allelic forms. The methods described in this example can be employed to humanize an endogenous SIRP α gene of a non-human animal using any human allele, or combination of human alleles (or allele fragments) as desired. In this example, human SIRP α variant 1 is employed for humanizing an endogenous SIRP α gene of a mouse.

A targeting vector for humanization of an extracellular region of a SIRP (e.g., SIRPα) gene was constructed using VELOCIGENE® technology (see, e.g., U.S. Pat. No. 6,586, 251 and Valenzuela et al. (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis, Nature Biotech. 21(6):652-659).

Briefly, mouse bacterial artificial chromosome (BAC) clone bMQ-261H14 was modified to delete the sequence containing exons 2 to 4 of an endogenous SIRP α gene and insert exons 2 to 4 of a human SIRP α gene using human BAC clone CTD-3035H21. The genomic DNA corresponding to exons 2 to 4 of an endogenous SIRP α gene (~8555 bp) was replaced in BAC clone bMQ-261H14 with a ~8581 bp DNA fragment containing exons 2 to 4 of a human SIRP α gene from BAC clone CTD-3035H21. Sequence analysis of the human SIRP α allele contained in BAC clone CTD-3035H21 revealed the allele to correspond to human variant 1. A neomycin cassette flanked by loxP sites was added to the end of the ~8581 bp human DNA fragment containing exons 2 to 4 of the human SIRP α gene (FIG. 1).

Upstream and downstream homology arms were obtained from mouse BAC DNA at positions 5' and 3' of exons 2 and 4, respectively, and added to the ~8581 bp human fragmentneomycin cassette to create the final targeting vector for humanization of an endogenous SIRPa gene, which contained from 5' to 3' a 5' homology arm containing 19 kb of mouse DNA 5' of exon 2 of the endogenous SIRP α gene, a ~8581 bp DNA fragment containing exons 2 to 4 of a human SIRPα gene, a neomycin cassette flanked by loxP sites, and a 3' homology arm containing 21 kb of mouse DNA 3' of exon 4 of an endogenous SIRPa gene. Targeted insertion of the targeting vector positioned the neomycin cassette in the fifth intron of a mouse SIRPα gene between exons 4 and 5. The targeting vector was linearized by digesting with SwaI and then used in homologous recombination in bacterial cells to achieve a targeted replacement of exons 2 to 4 in a mouse SIRPα gene with exons 2 to 4 of a human SIRPα gene (FIG. 1).

The targeted BAC DNA (described above) was used to electroporate mouse ES cells to created modified ES cells comprising a replacement of exons 2 to 4 in an endogenous mouse SIRPa gene with a genomic fragment comprising exons 2 to 4 of a human SIRPa gene. Positive ES cells 5 containing a genomic fragment comprising exons 2 to 4 of a human SIRPα gene were identified by quantitative PCR using TAQMANTM probes (Lie and Petropoulos, 1998. Curr. Opin. Biotechnology 9:43-48). The nucleotide sequence across the upstream insertion point included the following, 10 which indicates endogenous mouse sequence upstream of the insertion point (contained within the parentheses below) linked contiguously to a human SIRPa genomic sequence present at the insertion point: (AGCTCTCCTA CCACTA-GACT GCTGAGACCC GCTGCTCTGC TCAGGACTCG 15 ATTTCCAGTA CACAATCTCC CTCTTTGAAA AGTAC-CACAC ATCCTGGGGT) GCTCTTGCAT TTGTGT-GACA CTTTGCTAGC CAGGCTCAGT CCTGGGTTCC AGGTGGGGAC TCAAACACAC TGGCACGAGT CTA-CATTGGA TATTCTTGGT (SEQ ID NO: 6). The nucleo- 20 tide sequence across the downstream insertion point at the 5' end of the neomycin cassette included the following, which indicates human SIRPa genomic sequence contiguous with cassette sequence downstream of the insertion point (contained within the parentheses below with loxP sequence 25 italicized): GCTCCCCATT CCTCACTGGC CCAGC-CCCTC TTCCCTACTC TTTCTAGCCC CTGCCTCATC CCATTGGGAG CCTGCCCCAC TCCCTGGCTG TGGAAGCCAG (TCGAG ATAACTTCGTATAATGTAT-GCTATACGAAGTTAT ATGCATGGCC TCCGCGCCGG 30 GTTTTGGCGC CTCCCGCGGG CGCCCCCCTC CTCACGGCGA) (SEQ ID NO: 7). The nucleotide sequence across the downstream insertion point at the 3' end of the neomycin cassette included the following, which indicates cassette sequence contiguous with mouse genomic 35 sequence 3' of exon 4 of an endogenous SIRPα gene (contained within the parentheses below): CATTCTCAGT ATTGTTTTGC CAAGTTCTAA TTCCATCAGA CCTC-GACCTG CAGCCCCTAG ATAACTTCGT ATAATG-AGGCTGGCGA TCTGGCTCAG GGACAGCCAG TACTGCAAAG AGTATCCTTG TTCATACCTT CTC-CTAGTGG CCATCTCCCT GGGACAGTCA) (SEQ ID NO: 8). Positive ES cell clones were then used to implant female mice using the VELOCIMOUSE® method (see, e.g., 45 U.S. Pat. No. 7,294,754 and Poueymirou et al. 2007, FO generation mice that are essentially fully derived from the donor gene-targeted ES cells allowing immediate phenotypic analyses Nature Biotech. 25(1):91-99) to generate a litter of pups containing an insertion of exons 2 to 4 of a 50 human SIRPa gene into an endogenous SIRPa gene of a

Targeted ES cells described above were used as donor ES cells and introduced into an 8-cell stage mouse embryo by the VELOCIMOUSE® method (supra). Mice bearing the 55 humanization of exons 2 to 4 of an endogenous SIRPα gene were identified by genotyping using a modification of allele assay (Valenzuela et al., supra) that detected the presence of the human SIRP α gene sequences.

Mice bearing the humanized SIRPa gene construct (i.e., 60 containing human SIRPa exons 2 to 4 in a mouse SIRPa gene) can be bred to a Cre deletor mouse strain (see, e.g., International Patent Application Publication No. WO 2009/ 114400) in order to remove any loxed neomycin cassette introduced by the targeting vector that is not removed, e.g., 65 at the ES cell stage or in the embryo. Optionally, the neomycin cassette is retained in the mice.

Pups are genotyped and a pup heterozygous for the humanized SIRPa gene construct is selected for character-

Example 2

Expression of Humanized SIRPα in Non-Human Animals

This example illustrates the characteristic expression of SIRPα protein on the surface of cells from non-human animals engineered to contain an humanized SIRPa gene construct as described in Example 1 at an endogenous SIRPa locus.

Briefly, spleens were isolated from wild type (WT) and mice heterozygous for a humanized SIRPa gene. Spleens were then perfused with Collagenase D (Roche Bioscience) and erythrocytes were lysed with ACK lysis buffer according to manufacturer's specifications. Cell surface expression of mouse and human SIRPa was analyzed by FACS using fluorochrome-conjugated anti-CD3 (17A2), anti-CD19 (1D3), anti-CD11b (M1/70), anti-human SIRPα (SE5A5), and anti-mouse SIRPa (P84). Flow cytometry was performed using BD LSRFORTESSATM. Exemplary expression of human and mouse SIRP α as detected on the surface of CD11b+ monocytes is shown in FIG. 2.

As shown in FIG. 2, expression of both mouse and humanized SIRPa were clearly detectable on the surface of CD11b+ monocytes from heterozygous mice.

Example 3

Human Cell Engraftment in Humanized SIRP Non-Human Animals

This example illustrates an improved engraftment of TATG CTATACGAAG TTATGCTAGC (TGTCTCATAG 40 human hematopoietic stem cells in non-human animals of the present invention having a humanized SIRPa gene.

> Briefly, Rag2 KO IL2Ry^{null} mice with or without a humanized SIRPa gene were raised under pathogen-free conditions. Newborn mice (2 to 5 days old) were irradiated with 240 cGy and injected intra-hepatically with 1×10⁵ CD34⁺ human hematopoietic stem cells. The mice were bled 10 to 12 weeks post engraftment and blood was analyzed by FACS using fluorochrome-conjugated anti-human CD45 (HI30), anti-human CD3 (SK7), anti-human CD19 (HIB19) and anti-mouse CD45 (30-F11) to check for the reconstitution of the human immune system. The genetic background of the mice is BALB/cTa×129/SvJae.

> Exemplary percentages of human CD34+ cells in wild type, mice heterozygous for humanized SIRPa, mice homozygous for humanized SIRPα and BALB-Rag2⁻ IL2Ryc $^{-/-}$ (DKO) mice are shown in FIGS. **3-5**.

As shown in this example, mice homozygous for a humanized SIRPa gene demonstrate improved engraftment of human CD34⁺ cells by providing the highest percentage of human CD34+ cells in the periphery (e.g., blood) as compared to other strains tested.

Taken together, these data demonstrate that humanized SIRP α is functional in the mice as described herein through expression on the surface of cells in the mouse and begin capable of supporting the engraftment of human CD34+ hematopoietic stem cells.

31 Example 4

Evaluating the Efficacy of Ab 1 on Raji Lymphoma Tumor Growth in BRG Mice

Summary

Ab 1 is bispecific antibody (bsAb) that binds to CD3, a T cell antigen associated with the T cell receptor (TCR) complex, and CD20, a B cell surface antigen present on normal B cells and several B cell lineage malignancies. Ab 1 is designed to bridge CD20-expressing cells with cytotoxic T cells by binding to the CD3 subunit of the TCR, resulting in CD20-directed polyclonal T cell killing. CD20 is a , clinically validated target for immunotherapy; the chimeric antibody rituximab is approved for treatment of Non Hodgkin Lymphomas (NHL) and Chronic Lymphocytic Leukemia (CLL). Although patients may become refractory to rituximab, loss of expression of CD20 is not typically 20 Test Systems observed. Therefore, a bispecific antibody bridging CD20positive tumor cells with cytotoxic T cells represents a potential anti-tumor strategy.

In this study, the effect of treatment with CD20×CD3 bsAb Ab 1 on human B cell lymphoma (Raji) tumor growth 25 was examined in a mouse tumor model. The model utilized hCD34+ engrafted BALB/c-Rag2null IL2rynull (BRG) mice that were humanized for SIRPa. These mice, with human T, B, and NK cells, as well as granulocytes, monocytes, and dendritic cells (DCs), were treated with Ab 1 30 twice weekly, resulting in significant suppression of Raji tumor growth compared to vehicle control and the nonbinding control mAb, Control Ab 5. Ab 1 treatment suppressed tumor growth at both 0.4 mg/kg and 0.04 mg/kg with greater significance than the vehicle control group throughout the treatment period (p<0.0001). No significant weight loss was observed in any treatment group. These results show that Ab 1 targets Raji tumors in mice with human immune cells, resulting in significant tumor suppression.

Materials and Methods

Materials

Test Compound and Control Antibody Test compound: Ab 1.

Control antibody: Control Ab 5.

Reagents

TABLE 4

Reagent List							
Reagent	Source	Identification					
Raji cells	Regeneron core facility	Raji P 1-4-10 Passage #4					
Human CD34+	Advanced						
hematopoietic stem	Biosciences						
cells (HSC)	Resource, Inc.						
isolated from human							
fetal livers							
hPBMCs	Reachbio	Catalog #0500-300, Lot #130322					
L-Histidine	Amresco	Catalog #181164-100G, Lot #3363E344					
Sucrose	Biosolutions	Catalog #BIO640-07, Lot #0816012					
RPMI	Irvine Scientific	Catalog #9160, Lot #9160100803					

32 TABLE 4-continued

Reagent List							
Reagent	Source	Identification					
FBS	Tissue Culture Biologicals	Catalog #101, Lot #107062					
Penicillin/ Streptomycin/ L-Glutamine	Gibco	Catalog #10376-016, Lot #1411480					
2-Mercaptoethanol	Gibco	Catalog #21985-023, Lot #762405					
Anti-human CD45	Invitrogen	Catalog #MHCD4518, Clone H130					
Anti-human NKp46	BD Biosciences	Catalog #558051, Clone 9E2					
Anti-human CD19	BD Biosciences	Catalog #555412, Clone HIB19					
Anti-human CD3	Invitrogen	Catalog #MHCD0328, Clone S4.1					
Anti-human CD14 Anti-human CD45 BD Fortessa	BD Biosciences BD Biosciences BD Biosciences	Catalog #557742, Clone M5E2 Catalog #557659, Clone 30-F1 Special Order Instrument					

The tumor studies presented in this report employed 24-32 week old male and female BALB/c-Rag2null IL2rynull (BRG) immunodeficient mice humanized for the signal regulatory protein alpha (SIRPα) gene. These were generated at Regeneron by embryonic stem (ES) cell targeting (Strowig et al., Proc Natl Acad Sci USA, 108(32): 13218-13223 (2011)). Upon recognition of CD47, SIRPα inhibits clearance of CD47 positive cells by macrophages. Previous studies have shown that BRG mice expressing the human SIRPa transgene have enhanced engraftment of human HSC (Strowig et al., Proc Natl Acad Sci USA, 108(32): 13218-13223 (2011)).

Newborn SIRPα BRG pups were irradiated and engrafted with hCD34+ hematopoietic progenitor cells derived from fetal liver (Traggiai, et al., Science, 304(5667): 104-107 (2004)). These human HSCs give rise to human T, B, and NK cells, as well as granulocytes, monocytes, and dendritic cells (DCs). Due to the low levels of circulating human B cells, there are low levels of circulating human IgG. Furthermore, these mice do not develop germinal centers, lack lymph nodes and have limited T and B cell replenishment if these cells are depleted. Murine monocytes, DCs, and granulocytes remain present as well Immune cell composition was 45 confirmed by flow cytometry of blood, and mice were randomized by % human CD45 engraftment prior to use in tumor studies. Mice were implanted with Raji tumor cells at Day 0, and the ability of Ab 1 to block tumor growth over 4 weeks was tested. Body weights and tumor volumes were 50 recorded on days 3, 6, 9, 13, 16, 20, 23, 27, 30 and 34 following implantation.

Experimental Design

Reconsititution of Human Immune System in SIRPα BRG

Immunodeficient BALB/c Rag2/-yc-/- (BRG) human SIRP alpha (SIRPα BRG) mice were bred in the germ-free isolators in the Regeneron animal facility. Neonate mice were irradiated with one dose of 300cGrey, 8-24 h prior to injection of human CD34+ hematopoietic stem cells (HSC) isolated from human fetal livers. The engraftment was allowed to develop for 12-16 weeks and the number of engrafted cells was periodically evaluated by flow cytometry. For the entire duration of the experiment, animals were housed in the Regeneron animal facility under standard conditions in a 12-hour day/night rhythm with access to food and water ad libitum. The number of animals per cage was limited to a maximum of 5 mice.

Mouse blood was analyzed to determine percent engraftment levels prior to initiating the study. Whole blood was collected into two capillary tubes containing 150 uL of 2% EDTA (ethylenediaminetetraacetic acid; 15 mg/mL) Red blood cells were lysed using ACK lysing buffer for 3 5 minutes and the buffer was neutralized with PBS (no calcium or magnesium). Cells were blocked with Fc Block for 5 minutes at 4° C. and then stained with human CD45, NKp46, CD19, CD3 and CD14 for 30 minutes at 4° C. Samples were analyzed by 5-laser flow cytometry (BD 10 Fortessa). Percent engraftment was determined as the % human CD45+ cells of total cells.

Raji Tumor Study Procedure in SIRPα BRG Mice

On day 0, groups of 5 SIRPa BRG mice were administered 2×10⁶ Raji tumor cells subcutaneously. On the same 15 day, mice were treated with an intraperitoneal (IP) dose of either Ab 1 (0.4 or 0.04 mg/kg), non-binding control mAb Control Ab 5 (which binds a feline antigen with no crossreactivity to human CD20 or CD3) at a dose of 0.4 mg/kg or vehicle alone. Mice subsequently received two doses of 20 Raji tumor growth was examined in a mouse model. Ab 1 antibody/week for 4 weeks. Tumor growth was measured with calipers on days 3, 6, 9, 13, 16, 20, 23, 27, 30 and 34. Study groups are summarized in Table 5.

TABLE 5

Summary of Treatment Groups in SIRPα BRG Mice									
Groups	Tumor	Antibody	Dose (mg/kg)	Route	Schedule	# Mice			
Control Groups	Raji	Raji No antibody (Vehicle alone)		IP	2×/wk	5			
Experimental Groups	Raji Raji Raji	Control Ab 5 Ab 1 Ab 1	0.4 0.4 0.04	IP IP IP	2×/wk 2×/wk 2×/wk	5 5 5			

Specific Procedures Preparation of Reagents

Ab 1 and Control Ab 5 were each diluted to the desired concentration in Vehicle (10 mM histidine, 5% sucrose, pH 40 5.8). Raji cells were obtained from the Regeneron core facility (passage 4) and maintained in culture media: RPMI 1640+10% FBS+Pen Strep-L-Glu+Mercaptoethanol. Raji cells were diluted to the desired concentration in media. Statistical Analyses

Statistical analyses were performed utilizing GraphPad software Prism 5.0 (MacIntosh Version). Statistical significance was determined by two-way ANOVA with Tukey's multiple comparisons post-test. Data from each of the readouts were compared across treatment groups. A threshold of 50 p<0.05 was considered statistically significant, as indicated by *. Mice that died prior to the end of study were removed from the combined tumor growth curve (but not the individual mouse growth curve) graphs as indicated and statistical analysis in order to analyze by two-way ANOVA. Results

Ab 1 Suppresses Raji Tumor Cell Growth in hCD34+ Engrafted SIRPα BRG Mice

Ab 1 suppressed Raji tumor growth compared to vehicle control and non-binding control in hCD34+ engrafted 60 SIRPα BRG mice (FIG. 6). Newborn SIRPα BRG pups were irradiated and engrafted with hCD34+ fetal liver cells as hematopoietic progenitor cells (Traggiai, et al., Science, 304(5667): 104-107 (2004)), which gave rise to human T, B, and NK cells, as well as granulocytes, monocytes, and DCs. 65 On day 0, hCD34+ engrafted SIRPa BRG mice were administered 2×10⁶ Raji tumor cells subcutaneously. On the

34

same day, mice were treated with an intraperitoneal (IP) dose of either Ab 1 (0.4 or 0.04 mg/kg) or the non-binding control mAb Control Ab 5, or vehicle control, followed by twice weekly doses throughout the study.

Compared to the vehicle control groups and the nonbinding control groups, Ab 1 significantly suppressed Raji tumor outgrowth administered at doses of 0.04 mg/kg (p<0.0001) or 0.4 mg/kg (p<0.0001) on day 34 post tumor implantation (FIG. 7). Furthermore, the effects of Ab 1 treatment were dose-dependent, with 0.4 mg/kg Ab 1 suppressing growth completely throughout the study, as compared to 0.04 mg/kg Ab 1, which suppressed tumor growth completely by Day 30. Neither Ab 1 nor the non-binding control mAb had a significant effect on mouse body weight throughout the study (FIG. 8).

CONCLUSION

The effect of treatment with Ab1, a CD20×CD3 bsAb, on was effective in tumor growth suppression in hCD34+ engrafted SIRPa BRG mice with human T, B, and NK cells, as well as granulocytes, monocytes, and DCs. Twice weekly treatment with Ab 1 resulted in significant and dose-depen-25 dent suppression of Raji human B cell lymphoma tumor growth compared to vehicle control and non-binding control. No significant weight loss was observed in any treatment group. These results show that Ab 1 targets Raji tumors in mice with human immune cells, resulting in significant 30 tumor growth suppression.

EQUIVALENTS

Having thus described several aspects of at least one 35 embodiment of this invention, it is to be appreciated by those skilled in the art that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawing are by way of example only and the invention is described in detail by the claims that follow.

Use of ordinal terms such as "first," "second," "third," etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.

The articles "a" and "an" as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to include the plural refer-55 ents. Claims or descriptions that include "or" between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention also includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process. Furthermore, it is to be understood that the invention encompasses all variations, combinations, and permu-

tations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the listed claims is introduced into another claim dependent on the same base claim (or, as relevant, any other claim) unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise. Where elements are presented as lists, (e.g., in Markush group or similar format) it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements, features, etc., certain embodiments of the invention or aspects of the invention consist, or consist essentially

of, such elements, features, etc. For purposes of simplicity those embodiments have not in every case been specifically set forth in so many words herein. It should also be understood that any embodiment or aspect of the invention can be explicitly excluded from the claims, regardless of whether the specific exclusion is recited in the specification.

Those skilled in the art will appreciate typical standards of deviation or error attributable to values obtained in assays or other processes described herein.

The publications, websites and other reference materials referenced herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 8
<210> SEQ ID NO 1
<211> LENGTH: 4007
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<400> SEOUENCE: 1
gegeteggee gggeegeeet egegetggee tegegaegge teegeaeage eegeaetege
tetgegaget gteccegete gegettgete teegatetee gteccegete cetetecete
                                                                      120
ttcctctccc cctctttcct tctccctcgc tatccgctcc cccgcccccg tgcctctggc
tetgegeetg geteeetegg gteegeteee ettteeegee ggeetggeee ggegteaege
teceggagte teceegeteg geggegtete attgtgggag ggggteagat caceeegeeg
                                                                      300
ggeggtggeg etggggggea geggaggggg aggggeetta gtegttegee egegeegee
                                                                      360
geoegeetge egagegeget cacegoeget eteceteett getetgeage egeggeeeat
                                                                      420
ggagcccgcc ggcccggccc ctggccgcct agggccgctg ctgctctgcc tgctgctctc
                                                                      480
cgcgtcctgt ttctgtacag gagccacggg gaaggaactg aaggtgactc agcctgagaa
                                                                      540
atcagtgtct gttgctgctg gggattcgac cgttctgaac tgcactttga cctccttgtt
                                                                      600
gccggtggga cccattaggt ggtacagagg agtagggcca agccggctgt tgatctacag
                                                                      660
tttcgcagga gaatacgttc ctcgaattag aaatgtttca gatactacta agagaaacaa
                                                                      720
tatggacttt tccatccgta tcagtaatgt caccccagca gatgctggca tctactactg
                                                                      780
tgtgaagttc cagaaaggat catcagagcc tgacacagaa atacaatctg gaggggaac
                                                                      840
agaggtetat gtactegeea aacettetee aceggaggta teeggeeeag cagacagggg
                                                                      900
catacctgac cagaaagtga acttcacctg caagtctcat ggcttctctc cccggaatat
                                                                      960
caccetgaag tggttcaaag atgggcaaga actecacece ttggagaeca eegtgaaece
                                                                     1020
tagtggaaag aatgteteet acaacatete cagcacagte agggtggtae taaacteeat
                                                                     1080
ggatgttaat totaaggtoa totgogaggt agoocacato accttggata gaagcootot
                                                                     1140
tcgtgggatt gctaacctgt ctaacttcat ccgagtttca cccaccgtga aggtcaccca
                                                                     1200
acagtccccg acgtcaatga accaggtgaa cctcacctgc cgggctgaga ggttctaccc
                                                                     1260
cgaggatete cagetgatet ggetggagaa tggaaacgta teacggaatg acaegeecaa
                                                                     1320
gaatctcaca aagaacacgg atgggaccta taattacaca agcttgttcc tggtgaactc
                                                                     1380
atotgotoat agagaggacg tggtgttoac gtgccaggtg aagcacgacc aacagccagc
                                                                     1440
gatcacccga aaccataccg tgctgggatt tgcccactcg agtgatcaag ggagcatgca
                                                                     1500
aaccttccct gataataatg ctacccacaa ctggaatgtc ttcatcggtg tgggcgtggc
                                                                     1560
```

-continued
-continued

gtgtgctttg	ctcgtagtcc	tgctgatggc	tgctctctac	ctcctccgga	tcaaacagaa	1620
gaaagccaag	gggtcaacat	cttccacacg	gttgcacgag	cccgagaaga	acgccaggga	1680
aataacccag	atccaggaca	caaatgacat	caacgacatc	acatacgcag	acctgaatct	1740
gcccaaagag	aagaagcccg	caccccgggc	ccctgagcct	aacaaccaca	cagaatatgc	1800
aagcattgag	acaggcaaag	tgcctaggcc	agaggatacc	ctcacctatg	ctgacctgga	1860
catggtccac	ctcagccggg	cacagccagc	ccccaagcct	gagccatctt	tctcagagta	1920
tgctagtgtc	caggtccaga	ggaagtgaat	ggggctgtgg	tctgtactag	gccccatccc	1980
cacaagtttt	cttgtcctac	atggagtggc	catgacgagg	acatccagcc	agccaatcct	2040
gtccccagaa	ggccaggtgg	cacgggtcct	aggaccaggg	gtaagggtgg	cctttgtctt	2100
ccctccgtgg	ctcttcaaca	cctcttgggc	acccacgtcc	ccttcttccg	gaggetgggt	2160
gttgcagaac	cagagggcga	actggagaaa	gctgcctgga	atccaagaag	tgttgtgcct	2220
cggcccatca	ctcgtgggtc	tggatcctgg	tcttggcaac	cccaggttgc	gtccttgatg	2280
ttccagagct	tggtcttctg	tgtggagaag	agctcaccat	ctctacccaa	cttgagcttt	2340
gggaccagac	tecetttaga	tcaaaccgcc	ccatctgtgg	aagaactaca	ccagaagtca	2400
gcaagttttc	agccaacagt	getggeetee	ccacctccca	ggctgactag	ccctggggag	2460
aaggaaccct	ctcctcctag	accagcagag	actccctggg	catgttcagt	gtggccccac	2520
ctcccttcca	gtcccagctt	getteeteea	gctagcacta	actcagcagc	atcgctctgt	2580
ggacgcctgt	aaattattga	gaaatgtgaa	ctgtgcagtc	ttaaagctaa	ggtgttagaa	2640
aatttgattt	atgctgttta	gttgttgttg	ggtttctttt	ctttttaatt	tcttttctt	2700
ttttgatttt	ttttctttcc	cttaaaacaa	cagcagcagc	atcttggctc	tttgtcatgt	2760
gttgaatggt	tgggtcttgt	gaagtctgag	gtctaacagt	ttattgtcct	ggaaggattt	2820
tcttacagca	gaaacagatt	tttttcaaat	teccagaate	ctgaggacca	agaaggatcc	2880
ctcagctgct	acttccagca	cccagcgtca	ctgggacgaa	ccaggccctg	ttcttacaag	2940
gccacatggc	tggccctttg	cctccatggc	tactgtggta	agtgcagcct	tgtctgaccc	3000
aatgctgacc	taatgttggc	cattccacat	tgaggggaca	aggtcagtga	tgccccctt	3060
cactcacaag	cacttcagag	gcatgcagag	agaagggaca	ctcggccagc	tctctgaggt	3120
aatcagtgca	aggaggagtc	cgttttttgc	cagcaaacct	cagcaggatc	acactggaac	3180
agaacctggt	catacctgtg	acaacacagc	tgtgagccag	ggcaaaccac	ccactgtcac	3240
tggctcgaga	gtctgggcag	aggctctgac	cctccaccct	ttaaactgga	tgccggggcc	3300
tggctgggcc	caatgccaag	tggttatggc	aaccctgact	atctggtctt	aacatgtagc	3360
tcaggaagtg	gaggcgctaa	tgtccccaat	ccctggggat	tcctgattcc	agctattcat	3420
gtaagcagag	ccaacctgcc	tatttctgta	ggtgcgactg	ggatgttagg	agcacagcaa	3480
ggacccagct	ctgtagggct	ggtgacctga	tacttctcat	aatggcatct	agaagttagg	3540
ctgagttggc	ctcactggcc	cagcaaacca	gaacttgtct	ttgtccgggc	catgttcttg	3600
ggctgtcttc	taattccaaa	gggttggttg	gtaaagctcc	acccccttct	cctctgccta	3660
aagacatcac	atgtgtatac	acacacgggt	gtatagatga	gttaaaagaa	tgtcctcgct	3720
ggcatcctaa	ttttgtctta	agttttttg	gagggagaaa	ggaacaaggc	aagggaagat	3780
gtgtagcttt	ggctttaacc	aggcagcctg	ggggctccca	agcctatgga	accctggtac	3840
aaagaagaga	acagaagcgc	cctgtgagga	gtgggatttg	tttttctgta	gaccagatga	3900

- Continued																
gaag	ggaa	aca 🤉	ggcc	ctgti	tt t	gtaca	atagi	t tg	caact	taa	aati	tttt	ggc 1	ttgc	aaaata	3960
ttt	ttgt	aat a	aaaga	attt	ct g	ggtaa	acaat	c aaa	aaaa	aaaa	aaaa	aaaa				4007
<21:	0 > Sl 1 > Ll 2 > T 3 > Ol	ENGTI YPE :	H: 50 PRT	09	mus	culus	3									
< 40	0 > S1	EQUEI	NCE :	2												
Met 1	Glu	Pro	Ala	Gly 5	Pro	Ala	Pro	Gly	Arg 10	Leu	Gly	Pro	Leu	Leu 15	Leu	
Cys	Leu	Leu	Leu 20	Ser	Ala	Ser	Сув	Phe 25	Сув	Thr	Gly	Ala	Thr	Gly	Lys	
Glu	Leu	Lys 35	Val	Thr	Gln	Pro	Glu 40	Lys	Ser	Val	Ser	Val 45	Ala	Ala	Gly	
Asp	Ser 50	Thr	Val	Leu	Asn	Сув 55	Thr	Leu	Thr	Ser	Leu 60	Leu	Pro	Val	Gly	
Pro 65	Ile	Arg	Trp	Tyr	Arg 70	Gly	Val	Gly	Pro	Ser 75	Arg	Leu	Leu	Ile	Tyr 80	
Ser	Phe	Ala	Gly	Glu 85	Tyr	Val	Pro	Arg	Ile 90	Arg	Asn	Val	Ser	Asp 95	Thr	
Thr	ГÀа	Arg	Asn 100	Asn	Met	Asp	Phe	Ser 105	Ile	Arg	Ile	Ser	Asn 110	Val	Thr	
Pro	Ala	Asp 115	Ala	Gly	Ile	Tyr	Tyr 120	Cys	Val	Lys	Phe	Gln 125	Lys	Gly	Ser	
Ser	Glu 130	Pro	Asp	Thr	Glu	Ile 135	Gln	Ser	Gly	Gly	Gly 140	Thr	Glu	Val	Tyr	
Val 145	Leu	Ala	Lys	Pro	Ser 150	Pro	Pro	Glu	Val	Ser 155	Gly	Pro	Ala	Asp	Arg 160	
Gly	Ile	Pro	Asp	Gln 165	Lys	Val	Asn	Phe	Thr 170	Сув	Lys	Ser	His	Gly 175	Phe	
Ser	Pro	Arg	Asn 180	Ile	Thr	Leu	Lys	Trp 185	Phe	Lys	Asp	Gly	Gln 190	Glu	Leu	
His	Pro	Leu 195	Glu	Thr	Thr	Val	Asn 200	Pro	Ser	Gly	Lys	Asn 205	Val	Ser	Tyr	
Asn	Ile 210	Ser	Ser	Thr	Val	Arg 215	Val	Val	Leu	Asn	Ser 220	Met	Asp	Val	Asn	
Ser 225	ГÀа	Val	Ile	CAa	Glu 230	Val	Ala	His	Ile	Thr 235	Leu	Asp	Arg	Ser	Pro 240	
Leu	Arg	Gly	Ile	Ala 245	Asn	Leu	Ser	Asn	Phe 250	Ile	Arg	Val	Ser	Pro 255	Thr	
Val	Lys	Val	Thr 260	Gln	Gln	Ser	Pro	Thr 265	Ser	Met	Asn	Gln	Val 270	Asn	Leu	
Thr	Cys	Arg 275	Ala	Glu	Arg	Phe	Tyr 280	Pro	Glu	Asp	Leu	Gln 285	Leu	Ile	Trp	
Leu	Glu 290	Asn	Gly	Asn	Val	Ser 295	Arg	Asn	Asp	Thr	Pro 300	ГÀа	Asn	Leu	Thr	
302 TÀa	Asn	Thr	Asp	Gly	Thr 310	Tyr	Asn	Tyr	Thr	Ser 315	Leu	Phe	Leu	Val	Asn 320	
Ser	Ser	Ala	His	Arg 325	Glu	Asp	Val	Val	Phe 330	Thr	Сув	Gln	Val	Lys 335	His	
Asp	Gln	Gln	Pro 340	Ala	Ile	Thr	Arg	Asn 345	His	Thr	Val	Leu	Gly 350	Phe	Ala	

41 42

-continued

His Ser Ser Asp Gln Gly Ser Met Gln Thr Phe Pro Asp Asn Asn Ala 360 Thr His Asn Trp Asn Val Phe Ile Gly Val Gly Val Ala Cys Ala Leu 375 Leu Val Val Leu Leu Met Ala Ala Leu Tyr Leu Leu Arg Ile Lys Gln Lys Lys Ala Lys Gly Ser Thr Ser Ser Thr Arg Leu His Glu Pro Glu 405 Lys Asn Ala Arg Glu Ile Thr Gln Ile Gln Asp Thr Asn Asp Ile Asn Asp Ile Thr Tyr Ala Asp Leu Asn Leu Pro Lys Glu Lys Lys Pro Ala Pro Arg Ala Pro Glu Pro Asn Asn His Thr Glu Tyr Ala Ser Ile Glu Thr Gly Lys Val Pro Arg Pro Glu Asp Thr Leu Thr Tyr Ala Asp Leu Asp Met Val His Leu Ser Arg Ala Gln Pro Ala Pro Lys Pro Glu Pro 485 490 Ser Phe Ser Glu Tyr Ala Ser Val Gln Val Gln Arg Lys 500 <210> SEO ID NO 3

<211> LENGTH: 4201

<212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 3

teeggeeege acceaeceee aagagggee tteagetttg gggeteagag geaegaeete ctggggaggg ttaaaaggca gacgcccccc cgcccccgc gcccccgcgc cccgactcct 120 tegeegeete cageeteteg ceagtgggaa geggggagea geegeggge eggagteegg 180 aggcgagggg aggtcggccg caacttcccc ggtccacctt aagaggacga tgtagccagc 240 togoagogot gacottagaa aaacaagttt gogoaaagtg gagoggggac coggoototg 300 ggcagccccg gcggcgcttc cagtgccttc cagccctcgc gggcggcgca gccgcggccc 360 atggageeeg eeggeeegge eeeeggeege etegggeege tgetetgeet getgetegee 420 gegteetgeg eetggteagg agtggegggt gaggaggage tgeaggtgat teageetgae aagteegtgt tggttgeage tggagagaea geeactetge getgeactge gaeetetetg atcoctgtgg ggcccatcca gtggttcaga ggagctggac caggccggga attaatctac aatcaaaaag aaggccactt cccccgggta acaactgttt cagacctcac aaagagaaac aacatqqact tttccatccq catcqqtaac atcaccccaq caqatqccqq cacctactac 720 780 tgtgtgaagt tccggaaagg gagccccgat gacgtggagt ttaagtctgg agcaggcact gagetgtetg tgegegeeaa accetetgee eeegtggtat egggeeetge ggegagggee 840 acaceteage acacagtgag etteacetge gagteecaeg getteteace eagagacate 900 accetgaaat ggttcaaaaa tgggaatgag etetcagaet tecagaecaa egtggaecee 960 gtaggagaga gcgtgtccta cagcatccac agcacagcca aggtggtgct gacccgcgag 1020 gacgttcact ctcaagtcat ctgcgaggtg gcccacgtca ccttgcaggg ggaccctctt cgtgggactg ccaacttgtc tgagaccatc cgagttccac ccaccttgga ggttactcaa 1140 cagcccgtga gggcagagaa ccaggtgaat gtcacctgcc aggtgaggaa gttctacccc 1200

cagagactac ag	ctgacctg	gttggagaat	ggaaacgtgt	cccggacaga	aacggcctca	1260
accgttacag ag	aacaagga	tggtacctac	aactggatga	gctggctcct	ggtgaatgta	1320
tctgcccaca gg	gatgatgt	gaagctcacc	tgccaggtgg	agcatgacgg	gcagccagcg	1380
gtcagcaaaa gc	catgacct	gaaggtctca	gcccacccga	aggagcaggg	ctcaaatacc	1440
gccgctgaga ac	actggatc	taatgaacgg	aacatctata	ttgtggtggg	tgtggtgtgc	1500
accttgctgg tg	gccctact	gatggcggcc	ctctacctcg	tccgaatcag	acagaagaaa	1560
gcccagggct cc	acttcttc	tacaaggttg	catgagcccg	agaagaatgc	cagagaaata	1620
acacaggaca ca	aatgatat	cacatatgca	gacctgaacc	tgcccaaggg	gaagaagcct	1680
gctccccagg ct	gcggagcc	caacaaccac	acggagtatg	ccagcattca	gaccagcccg	1740
cagecegegt eg	gaggacac	cctcacctat	gctgacctgg	acatggtcca	cctcaaccgg	1800
acccccaagc ag	ccggcccc	caagcctgag	cegteettet	cagagtacgc	cagcgtccag	1860
gtcccgagga ag	tgaatggg	accgtggttt	gctctagcac	ccatctctac	gcgctttctt	1920
gtcccacagg ga	.gccgccgt	gatgagcaca	gccaacccag	ttcccggagg	gctggggcgg	1980
tgcaggctct gg	gacccagg	ggccagggtg	getettetet	ccccacccct	ccttggctct	2040
ccagcacttc ct	gggcagcc	acggccccct	cccccacat	tgccacatac	ctggaggctg	2100
acgttgccaa ac	cagccagg	gaaccaacct	gggaagtggc	cagaactgcc	tggggtccaa	2160
gaactcttgt go	ctccgtcc	atcaccatgt	gggttttgaa	gaccctcgac	tgcctccccg	2220
atgeteegaa ge	ctgatctt	ccagggtggg	gaggagaaaa	teccaeetee	cctgacctcc	2280
accacctcca co	accaccac	caccaccacc	accaccacta	ccaccaccac	ccaactgggg	2340
ctagagtggg ga	agatttcc.	cctttagatc	aaactgcccc	ttccatggaa	aagctggaaa	2400
aaaactctgg aa	.cccatatc	caggettggt	gaggttgctg	ccaacagtcc	tggcctcccc	2460
catecetagg et	aaagagcc	atgagtcctg	gaggaggaga	ggacccctcc	caaaggactg	2520
gagacaaaac cc	tctgcttc	cttgggtccc	tccaagactc	cctggggccc	aactgtgttg	2580
ctccacccgg ac	ccatctct	cccttctaga	cctgagcttg	cccctccagc	tagcactaag	2640
caacatctcg ct	gtggacgc	ctgtaaatta	ctgagaaatg	tgaaacgtgc	aatcttgaaa	2700
ctgaggtgtt ag	aaaacttg	atctgtggtg	ttttgttttg	tttttttct	taaaacaaca	2760
gcaacgtgat ct	tggctgtc	tgtcatgtgt	tgaagtccat	ggttgggtct	tgtgaagtct	2820
gaggtttaac ag	tttgttgt	cctggaggga	ttttcttaca	gcgaagactt	gagtteetee	2880
aagtcccaga ac	cccaagaa	tgggcaagaa	ggatcaggtc	agccactccc	tggagacaca	2940
gccttctggc tg	ggactgac	ttggccatgt	tctcagctga	gccacgcggc	tggtagtgca	3000
gccttctgtg ac	cccgctgt	ggtaagtcca	gcctgcccag	ggctgctgag	ggctgcctct	3060
tgacagtgca gt	cttatcga	gacccaatgc	ctcagtctgc	tcatccgtaa	agtggggata	3120
gtgaagatga ca	.cccctccc	caccacctct	cataagcact	ttaggaacac	acagagggta	3180
gggatagtgg co	ctggccgt	ctatcctacc	cctttagtga	ccgcccccat	cccggctttc	3240
tgagctgatc ct	tgaagaag	aaatcttcca	tttctgctct	caaaccctac	tgggatcaaa	3300
ctggaataaa tt	gaagacag	ccagggggat	ggtgcagctg	tgaagctcgg	gctgattccc	3360
cctctgtccc ag	aaggttgg	ccagagggtg	tgacccagtt	accctttaac	ccccaccctt	3420
ccagtcgggt gt	gagggcct	gaccgggccc	agggcaagca	gatgtcgcaa	gccctattta	3480
ttcagtcttc ac	tataactc	ttagagttga	gacgctaatg	ttcatgactc	ctggccttgg	3540
gatgcccaag gg						3600
	33	-5 5			-	

ggaggtccta caggt	gaaac tgcagg	gaget cageata	gac ccagctctct (gggggatggt 3660
cacctggtga tttca	aatgat ggcatc	cagg aattagc	tga gccaacagac (atgtggaca 3720
gctttggcca gagct	cccgt gtggca	tctg ggagcca	cag tgacccagcc a	acctggctca 3780
ggctagttcc aaatt	ccaaa agattg	gctt gtaaacc	ttc gtctccctct (ettttaccca 3840
gagacagcac atacg	gtgtgc acacgc	atgc acacaca	cat tcagtatttt a	aaagaatgt 3900
tttcttggtg ccatt	ttcat tttatt	ttat tttttaa	ttc ttggaggggg a	aaataaggga 3960
ataaggccaa ggaag	gatgta tagctt	tage tttagee	tgg caacctggag a	aatccacata 4020
ccttgtgtat tgaac	cccag gaaaag	ggaag aggtcga	acc aaccetgegg a	aggagcatg 4080
gtttcaggag tttat	tttaa gactgo	tggg aaggaaa	cag gececatttt (gtatatagtt 4140
gcaacttaaa ctttt	tgget tgeaaa	atat ttttgta	ata aagatttetg o	ggtaataatg 4200
а				4201
<210> SEQ ID NO <211> LENGTH: 50 <212> TYPE: PRT <213> ORGANISM:	04	;		
<400> SEQUENCE:	4			
Met Glu Pro Ala 1	Gly Pro Ala 5	Pro Gly Arg 1	Leu Gly Pro Leu	Leu Cys 15
Leu Leu Leu Ala 20	Ala Ser Cys	Ala Trp Ser (25	Gly Val Ala Gly 30	Glu Glu
Glu Leu Gln Val 35	Ile Gln Pro	Asp Lys Ser ' 40	Val Leu Val Ala 45	Ala Gly
Glu Thr Ala Thr 50	Leu Arg Cys 55	Thr Ala Thr	Ser Leu Ile Pro 60	Val Gly
Pro Ile Gln Trp 65	Phe Arg Gly		Gly Arg Glu Leu 75	Ile Tyr 80
Asn Gln Lys Glu	Gly His Phe 85	Pro Arg Val '	Thr Thr Val Ser	Asp Leu 95
Thr Lys Arg Asn	Asn Met Asp	Phe Ser Ile 1	Arg Ile Gly Asn	Ile Thr
Pro Ala Asp Ala 115		Tyr Cys Val 1	Lys Phe Arg Lys 125	Gly Ser
Pro Asp Asp Val	Glu Phe Lys 135	Ser Gly Ala	Gly Thr Glu Leu 140	Ser Val
Arg Ala Lys Pro 145	Ser Ala Pro 150		Gly Pro Ala Ala 155	Arg Ala
Thr Pro Gln His	Thr Val Ser	Phe Thr Cys (Glu Ser His Gly	Phe Ser
Pro Arg Asp Ile 180		Trp Phe Lys 1	Asn Gly Asn Glu 190	
	Acn Val Acn			Tur Car
Asp Phe Gln Thr 195	_	200	205	1,1 001
Ile His Ser Thr 210	Ala Lys Val 215	Val Leu Thr	Arg Glu Asp Val 220	His Ser
Gln Val Ile Cys 225	Glu Val Ala 230		Leu Gln Gly Asp 235	Pro Leu 240
Arg Gly Thr Ala	Asn Leu Ser 245	Glu Thr Ile 2 250	Arg Val Pro Pro	Thr Leu 255

Glu V		Thr	Gln 260	Gln	Pro	Val	Arg	Ala	Glu	Asn	Gln	Val		Val	Thr
Cys (Gln							265					270		
		Val 275	Arg	Lys	Phe	Tyr	Pro 280	Gln	Arg	Leu	Gln	Leu 285	Thr	Trp	Leu
Glu A	Asn 290	Gly	Asn	Val	Ser	Arg 295	Thr	Glu	Thr	Ala	Ser 300	Thr	Val	Thr	Glu
Asn I 305	Lys	Asp	Gly	Thr	Tyr 310	Asn	Trp	Met	Ser	Trp 315	Leu	Leu	Val	Asn	Val 320
Ser A	Ala	His	Arg	Asp 325	Asp	Val	Lys	Leu	Thr 330	Сла	Gln	Val	Glu	His 335	Asp
Gly (Gln	Pro	Ala 340	Val	Ser	Lys	Ser	His 345	Asp	Leu	ГÀЗ	Val	Ser 350	Ala	His
Pro I	Lys	Glu 355	Gln	Gly	Ser	Asn	Thr 360	Ala	Ala	Glu	Asn	Thr 365	Gly	Ser	Asn
Glu A	Arg 370	Asn	Ile	Tyr	Ile	Val 375	Val	Gly	Val	Val	380 CÀa	Thr	Leu	Leu	Val
Ala I 385	Leu	Leu	Met	Ala	Ala 390	Leu	Tyr	Leu	Val	Arg 395	Ile	Arg	Gln	Lys	Lys 400
Ala (Gln	Gly	Ser	Thr 405	Ser	Ser	Thr	Arg	Leu 410	His	Glu	Pro	Glu	Lys 415	Asn
Ala A	Arg	Glu	Ile 420	Thr	Gln	Asp	Thr	Asn 425	Asp	Ile	Thr	Tyr	Ala 430	Asp	Leu
Asn I	Leu	Pro 435	Lys	Gly	Lys	Lys	Pro 440	Ala	Pro	Gln	Ala	Ala 445	Glu	Pro	Asn
Asn I	His 450	Thr	Glu	Tyr	Ala	Ser 455	Ile	Gln	Thr	Ser	Pro 460	Gln	Pro	Ala	Ser
Glu <i>I</i> 465	Asp	Thr	Leu	Thr	Tyr 470	Ala	Asp	Leu	Asp	Met 475	Val	His	Leu	Asn	Arg 480
Thr I	Pro	Lys	Gln	Pro 485	Ala	Pro	Lys	Pro	Glu 490	Pro	Ser	Phe	Ser	Glu 495	Tyr
Alas	Ser	Val	Gln 500	Val	Pro	Arg	Lys								
<211:	<210> SEQ ID NO 5 <211> LENGTH: 508 <212> TYPE: PRT <213> ORGANISM: Homo sapiens														
<400	> SE	QUEN	ICE :	5											
Met (Glu	Pro	Ala	Gly 5	Pro	Ala	Pro	Gly	Arg 10	Leu	Gly	Pro	Leu	Leu 15	Leu
Cys I	Leu	Leu	Leu 20	Ser	Ala	Ser	CÀa	Phe 25	Cys	Thr	Gly	Val	Ala 30	Gly	Glu
Glu (Glu	Leu 35	Gln	Val	Ile	Gln	Pro 40	Aap	ГЛа	Ser	Val	Leu 45	Val	Ala	Ala
Gly (Glu 50	Thr	Ala	Thr	Leu	Arg 55	CÀa	Thr	Ala	Thr	Ser 60	Leu	Ile	Pro	Val
Gly I 65	Pro	Ile	Gln	Trp	Phe 70	Arg	Gly	Ala	Gly	Pro 75	Gly	Arg	Glu	Leu	Ile 80
Tyr A	Asn	Gln	Lys	Glu 85	Gly	His	Phe	Pro	Arg 90	Val	Thr	Thr	Val	Ser 95	Asp
Leu :	Thr	Lys	Arg 100	Asn	Asn	Met	Asp	Phe 105	Ser	Ile	Arg	Ile	Gly 110	Asn	Ile
Thr I	Pro	Ala 115	Asp	Ala	Gly	Thr	Tyr 120	Tyr	Сув	Val	Lys	Phe 125	Arg	Lys	Gly

_															
Ser	Pro 130	Asp	Asp	Val	Glu	Phe 135	Lys	Ser	Gly	Ala	Gly 140	Thr	Glu	Leu	Ser
Val 145	Arg	Ala	Lys	Pro	Ser 150	Ala	Pro	Val	Val	Ser 155	Gly	Pro	Ala	Ala	Arg 160
Ala	Thr	Pro	Gln	His 165	Thr	Val	Ser	Phe	Thr 170	Cys	Glu	Ser	His	Gly 175	Phe
Ser	Pro	Arg	Asp 180	Ile	Thr	Leu	Lys	Trp 185	Phe	Lys	Asn	Gly	Asn 190	Glu	Leu
Ser	Asp	Phe 195	Gln	Thr	Asn	Val	Asp 200	Pro	Val	Gly	Glu	Ser 205	Val	Ser	Tyr
Ser	Ile 210	His	Ser	Thr	Ala	Lys 215	Val	Val	Leu	Thr	Arg 220	Glu	Asp	Val	His
Ser 225	Gln	Val	Ile	СЛа	Glu 230	Val	Ala	His	Val	Thr 235	Leu	Gln	Gly	Asp	Pro 240
Leu	Arg	Gly	Thr	Ala 245	Asn	Leu	Ser	Glu	Thr 250	Ile	Arg	Val	Pro	Pro 255	Thr
Leu	Glu	Val	Thr 260	Gln	Gln	Pro	Val	Arg 265	Ala	Glu	Asn	Gln	Val 270	Asn	Val
Thr	Cys	Gln 275	Val	Arg	rys	Phe	Tyr 280	Pro	Gln	Arg	Leu	Gln 285	Leu	Thr	Trp
Leu	Glu 290	Asn	Gly	Asn	Val	Ser 295	Arg	Thr	Glu	Thr	Ala 300	Ser	Thr	Val	Thr
Glu 305	Asn	Lys	Asp	Gly	Thr 310	Tyr	Asn	Trp	Met	Ser 315	Trp	Leu	Leu	Val	Asn 320
Val	Ser	Ala	His	Arg 325	Asp	Asp	Val	Lys	Leu 330	Thr	CAa	Gln	Val	Glu 335	His
Asp	Gly	Gln	Pro 340	Ala	Val	Ser	Lys	Ser 345	His	Asp	Leu	Lys	Val 350	Ser	Ala
His	Pro	155 155	Glu	Gln	Gly	Ser	Asn 360	Thr	Ala	Ala	Asp	Asn 365	Asn	Ala	Thr
His	Asn 370	Trp	Asn	Val	Phe	Ile 375	Gly	Val	Gly	Val	Ala 380	CAa	Ala	Leu	Leu
Val 385	Val	Leu	Leu	Met	Ala 390	Ala	Leu	Tyr	Leu	Leu 395	Arg	Ile	Lys	Gln	Lys 400
Lys	Ala	Lys	Gly	Ser 405	Thr	Ser	Ser	Thr	Arg 410	Leu	His	Glu	Pro	Glu 415	Lys
Asn	Ala	Arg	Glu 420	Ile	Thr	Gln	Ile	Gln 425	Asp	Thr	Asn	Asp	Ile 430	Asn	Asp
Ile	Thr	Tyr 435	Ala	Asp	Leu	Asn	Leu 440	Pro	Lys	Glu	Lys	Lys 445	Pro	Ala	Pro
Arg	Ala 450	Pro	Glu	Pro	Asn	Asn 455	His	Thr	Glu	Tyr	Ala 460	Ser	Ile	Glu	Thr
Gly 465	Lys	Val	Pro	Arg	Pro 470	Glu	Asp	Thr	Leu	Thr 475	Tyr	Ala	Asp	Leu	Asp 480
Met	Val	His	Leu	Ser 485	Arg	Ala	Gln	Pro	Ala 490	Pro	Lys	Pro	Glu	Pro 495	Ser
Phe	Ser	Glu	Tyr 500	Ala	Ser	Val	Gln	Val 505	Gln	Arg	Lys				

<210> SEQ ID NO 6 <211> LENGTH: 200 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

-continued	
<223> OTHER INFORMATION: Synthetic Oligonucleotide	
<400> SEQUENCE: 6	
ageteteeta eeaetagaet getgagaeee getgetetge teaggaeteg attteeagta	60
cacaatetee etettigaaa agtaecacae ateetggggt getettgeat tigtgigaea	120
ctttgctagc caggctcagt cctgggttcc aggtggggac tcaaacacac tggcacgagt	180
ctacattgga tattcttggt	200
<210> SEQ ID NO 7 <211> LENGTH: 199 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Oligonucleotide	
<400> SEQUENCE: 7	
getecceatt ceteactgge ecageceete ttecetacte tttetagece etgeeteate	60
tecetggetg ceattgggag cetgeceeae tggaageeag tegagataae ttegtataat	120
gtatgctata cgaagttata tgcatggcct ccgcgccggg ttttggcgcc tcccgcgggc	180
geceette teaeggega	199
<210> SEQ ID NO 8 <211> LENGTH: 200 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Oligonucleotide	
<400> SEQUENCE: 8	
catteteagt attgttttge caagttetaa tteeateaga eetegaeetg eageeeetag	60
ataacttcgt ataatgtatg ctatacgaag ttatgctagc tgtctcatag aggctggcga	120
totggotcag ggacagocag tactgoaaag agtatoottg ttoatacott otootagtgg	180

We claim:

ccatctccct gggacagtca

- 1. A rodent whose genome comprises a replacement of exons 2, 3 and 4 of a rodent SIRP α gene at an endogenous 45 rodent SIRP α locus with exons 2, 3 and 4 of a human SIRP α gene to form a humanized SIRP α gene, wherein said humanized SIRP α gene is operably linked to a rodent SIRP α promoter at said endogenous rodent SIRP α locus, and expresses in said rodent a humanized SIRP α protein comprising an extracellular portion of the human SIRP α protein encoded by said human SIRP α gene and an intracellular portion of the rodent SIRP α protein encoded by said rodent SIRP α gene, and wherein the rodent is selected from a mouse or a rat.
 - 2. The rodent of claim 1, wherein said rodent is a rat.
- 3. The rodent of claim 2, wherein said humanized SIRP α gene comprises exons 1, 5, 6, 7 and 8 of said rodent SIRP α gene.
- 4. The rodent of claim 2, wherein said human SIRP α 60 protein comprises the amino acid sequence as set forth in SEQ ID NO: 4.
- 5. The rodent of claim 4, wherein the extracellular portion of said human SIRP α protein comprises amino acid residues 28-362 of said human SIRP α protein.
- $\pmb{6}.$ The rodent of claim $\pmb{2},$ wherein the rat does not express a rat SIRP α protein.

7. An isolated rodent cell or tissue whose genome comprises a replacement of exons 2, 3 and 4 of a rodent SIRP α gene at an endogenous rodent SIRP α locus with exons 2, 3 and 4 of a human SIRP α gene to form a humanized SIRP α gene, wherein said humanized SIRP α gene is operably linked to a rodent SIRP α promoter at said endogenous rodent SIRP α locus, and expresses in said rodent cell or tissue a humanized SIRP α protein comprising an extracellular portion of the human SIRP α protein encoded by said human SIRP α gene and an intracellular portion of the rodent SIRP α protein encoded by said rodent SIRP α gene, and wherein the rodent is selected from a mouse or a rat.

200

- 8. The isolated cell or tissue of claim 7, wherein said rodent is a rat.
- 9. The isolated cell or tissue of claim 8, wherein the humanized SIRP α gene comprises exons 1, 5, 6, 7 and 8 of said rodent SIRP α gene.
- 10. The isolated cell or tissue of claim 8, wherein the cell or tissue does not express a rat SIRP α protein.
- 11. The isolated cell or tissue of claim 8, wherein the cell or tissue is an embryonic stem (ES) cell.
 - 12. A rodent embryo generated from the ES cell of claim 11.

52

53

- 13. A method of making a rodent, the method comprising:
- (a) replacing exons 2, 3 and 4 of a rodent SIRPα gene at an endogenous rodent SIRPα locus in a rodent ES cell with exons 2, 3 and 4 of a human SIRPα gene to form a humanized SIRPα gene, wherein said humanized SIRPα gene is operably linked to a rodent SIRPα promoter at said endogenous rodent SIRPα locus and encodes a humanized SIRPα protein comprising an extracellular portion of the human SIRPα protein encoded by said human SIRPα gene and an intracellular portion of the rodent SIRPα protein encoded by said rodent SIRPα gene, and wherein the rodent is selected from mouse or rat, thereby obtaining a modified rodent ES cell comprising said humanized SIRPα gene:
- (b) creating a rodent using the modified ES cell of (a).
- 14. The method of claim 13, wherein the rodent is rat.
- 15. The method of claim 14, wherein said humanized SIRP α gene comprises exons 1, 5, 6, 7 and 8 of said rodent SIRP α gene.
- 16. The method of claim 14, wherein the extracellular portion of said human SIRP α protein comprises amino acid residues 28-362 of SEQ ID NO: 4.
- 17. A method of engrafting human cells into a rodent, comprising steps of:
 - (a) providing a rodent whose genome comprises a replacement of exons 2, 3 and 4 of a rodent SIRPα gene at an endogenous rodent SIRPα locus with exons 2, 3 and 4 of a human SIRPα gene to form a humanized SIRPα gene, wherein said humanized SIRPα gene is 30 operably linked to a rodent SIRPα promoter at said endogenous rodent SIRPα locus and expresses in said rodent a humanized SIRPα protein comprising an extracellular portion of the human SIRPα protein encoded by said human SIRPα gene and an intracellular portion of the rodent SIRPα protein encoded by said rodent SIRPα gene, and wherein the rodent is selected from a mouse or a rat; and
 - (b) transplanting one or more human cells into the rodent.
 - 18. The method of claim 17, wherein the rodent is a rat. 40
 - 19. The method of claim 18, further comprising a step of:
 - (c) assaying engraftment of the one or more human cells in the rodent.
- 20. The method of claim 19, wherein the step of assaying comprises comparing the engraftment of the one or more 45 human cells to the engraftment in one or more wild-type rats or in one or more rats whose genome does not comprise said replacement.
- 21. The method of claim 18, wherein said humanized SIRP α gene comprises exons 1, 5, 6, 7 and 8 of said rodent 50 SIRP α gene.
- 22. The method of claim 18, wherein the extracellular portion of said human SIRPα protein comprises amino acids 28-362 of SEQ ID NO: 4.
- 23. The method of claim 18, wherein the human cells are 55 hematopoietic stem cells.
- 24. The method of claim 18, wherein the human cells are transplanted intravenously, intraperitoneally, or subcutaneously.
 - 25. A method comprising,
 - (a) providing one or more rodent cells whose genome comprises a replacement of exons 2, 3 and 4 of a rodent SIRP α gene at an endogenous rodent SIRP α locus with exons 2, 3 and 4 of a human SIRP α gene to form a humanized SIRP α gene, wherein said humanized SIRP α gene is operably linked to a rodent SIRP α promoter at said endogenous rodent SIRP α locus and

54

expresses in said one or more rodent cells a humanized SIRP α protein comprising an extracellular portion of the human SIRP α protein encoded by said human SIRP α gene and an intracellular portion of the rodent SIRP α protein encoded by said rodent SIRP α gene, and wherein the rodent is selected from a mouse or a rat;

- (b) incubating the one or more rodent cells of step (a) with a labeled substrate; and
- (c) measuring phagocytosis of the labeled substrate by the one or more rodent cells of step (b).
- **26**. The method of claim **25**, wherein said rodent is a rat. **27**. The method of claim **26**, wherein said humanized SIRPα gene comprises exons 1, 5, 6, 7 and 8 of said rodent SIRPα gene.
- **28**. The method of claim **26**, wherein the substrate is fluorescently labeled or labeled with an antibody.
- 29. The method of claim 26, wherein the substrate is one or more red blood cells or one or more bacterial cells.
 - 30. A method comprising,
 - (a) providing a rodent whose genome comprises a replacement of exons 2, 3 and 4 of a rodent SIRPα gene at an endogenous rodent SIRPα locus with exons 2, 3 and 4 of a human SIRPα gene to form a humanized SIRPα gene, wherein said humanized SIRPα gene is operably linked to a rodent SIRPα promoter at said endogenous rodent SIRPα locus and expresses in said rodent a humanized SIRPα protein comprising an extracellular portion of the human SIRPα protein encoded by said human SIRPα gene and an intracellular portion of the rodent SIRPα protein encoded by said rodent SIRPα gene, and wherein the rodent is selected from a mouse or a rat;
 - (b) exposing the rodent to an antigen; and
 - (c) measuring phagocytosis of the antigen by one or more cells of the rodent.
 - 31. The method of claim 30, wherein said rodent is a rat. 32. The method of claim 31, wherein said humanized
- **32.** The method of claim **31**, wherein said humanized SIRP α gene comprises exons 1, 5, 6, 7 and 8 of said rodent SIRP α gene.
- 33. The method of claim 31, wherein the step of exposing comprises exposing the rodent to an antigen that is fluorescently labeled.
- **34**. The method of claim **31**, wherein the step of exposing comprises exposing the rodent to one or more cells that comprise the antigen.
- 35. The method of claim 34, wherein the step of exposing comprises exposing the rodent to one or more human cells comprising the antigen or to one or more bacterial cells comprising the antigen.
- **36.** A method of assessing the therapeutic efficacy of a drug targeting human cells, comprising:

providing a rodent whose genome a replacement of exons 2, 3 and 4 of a rodent SIRPα gene at an endogenous rodent SIRPα locus with exons 2, 3 and 4 of a human SIRPα gene to form a humanized SIRPα gene, wherein said humanized SIRPα gene is operably linked to a rodent SIRPα promoter at said endogenous rodent SIRPα locus and expresses in said rodent a humanized SIRPα protein comprising an extracellular portion of the human SIRPα protein encoded by said human SIRPα gene and an intracellular portion of the rodent SIRPα protein encoded by said rodent SIRPα gene, and wherein the rodent is selected from a mouse or a rat; transplanting one or more human cells into the rodent;

administering a drug candidate to said rodent; and

monitoring the human cells in the rodent to determine the therapeutic efficacy of the drug candidate.

37. The method of claim 36, wherein said rodent is a rat.

- **38**. The method of claim **37**, wherein the human cells are cancer cells, and said drug candidate is an anti-cancer drug candidate.
- ${\bf 39}.$ The method of claim ${\bf 36},$ wherein said drug candidate $\,\,$ 5 is an antibody.
- **40**. The method of claim **36**, wherein said rodent further comprises human immune cells.
- **41**. The method of claim **40**, wherein said drug candidate is a bispecific antibody that binds to an antigen on the human 10 immune cells and an antigen on the transplanted human cancer cells.

* * * * *